Тема . Логарифмы

Базовые логарифмические неравенства и сравнения

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела логарифмы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#80052

Решите неравенство

      loglog x       log log x
(log5x) 3  2 + (log2x) 3  5 > 2
Показать ответ и решение

ОДЗ данного неравенства x> 1.  На области допустимых значений равносильны переходы:

(log x)log3log5x > 1⇐ ⇒
(log2x− 1)⋅loglog x> 0⇐⇒
   2       3   5
(x− 2)⋅(log5x− 1)>0 ⇐⇒
(x− 2)⋅(x− 5) >0
Ответ:

 (1;2)∪ (5;+∞ )

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!