Квадратичные вычеты
Ошибка.
Попробуйте повторить позже
Подсказка 1, пункт а
Как доказывать, что все простые делители числа вида 4k+1? Например, можно сказать, что -1 является квадратичным вычетом. Откуда это взять? Вспомните, в какой формуле сокращенного умножения есть что-то похожее на n^4-n^2+1.
Подсказка 1, пункт б
Как такое можно доказывать? Можно найти показатель числа n по модулю 12. Поймите, что показатель может быть лишь 4 или 12. Но 4 нас не устраивает. Как отсеять этот вариант?
(a) Ясно, что не является делителем Любой простой нечетный делитель числа является делителем и так как Итак, если то является квадратичным вычетом по модулю Как мы уже ни раз отмечали, является квадратичным вычетом по модулю тогда и только тогда, когда
(b) Найдем показатель числа по модулю Поскольку то значит Так как значит либо либо Если то откуда Тогда – противоречие.
Итак, Согласно малой теореме Ферма, откуда или – что и требовалось доказать.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!