Функции на ИТМО
Ошибка.
Попробуйте повторить позже
Докажите, что не существует функции , определённой для всех
, такой, что
и
Источники:
Подсказка 1
Видим два уравнения с различными аргументами. Тогда сначала попробуем подставить x² во второе уравнение, а х+1/х в первое из условия и посмотреть, что выйдет. Что тогда можно общего заметить?
Подсказка 2
Верно, x²+1/x² есть в аргументах обоих уравнениях. Тогда можно обозначить его за у, учитывая все ограничения, и выразить f(y) через f(y+2). Получим новое функциональное уравнение. Как теперь можно добиться противоречия, что такой функции нету?
Подсказка 3
Ага, функция не может принимать разные значения в одной точке. Теперь попробуйте подставлять 3 и 5 в получившиеся уравнения и добиться противоречия, что в точке 5 функция принимает различные значения.
С одной стороны,
С другой стороны,
Сравнивая эти равенства, получаем, что для любого числа , представимого в виде
при
, то есть для любого
,
выполняется равенство
. Тогда
откуда . Следовательно,
. С другой стороны,
откуда . Получаем противоречие, значит, такой функции действительно не существует.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!