Функции на ИТМО
Ошибка.
Попробуйте повторить позже
Дана функция , где
— многочлен степени 1000 с положительными коэффициентами. Пусть
— сороковая
производная
. Докажите, что
Источники:
Рассмотрим какой-то одночлен . Его
-ая производная равна
, а поскольку и
, и
не больше
тысячи, эта производная не превосходит
, причём равенство достигается только когда
и
.
Значит, аналогичное неравенство верно и для суммы одночленов. Подставляем вместо
число 1000, и получаем, что
По индукции легко доказать:
Тогда, воспользовавшись доказанным в предыдущем абзаце, получаем, что
Кроме того, заметим, что поскольку в данной сумме встречается не только первая производная, хотя бы одно из суммируемых нами
равенств на самом деле строгое, поэтому мы можем заменить знак на
.
Таким образом, мы получили, что , откуда делением на
получаем требуемое неравенство.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!