2.02 Частично заполненный фрагмент таблицы
Ошибка.
Попробуйте повторить позже
Логическая функция задается выражением:
Ниже представлен фрагмент таблицы истинности функции .
Определите, какому столбцу истинности функции соответствует каждая переменная
. В ответе напишите
буквы в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу;
затем буква, соответствующая второму столбцу, и т.д.). Буквы в ответе пишите подряд, никаких разделителей между
буквами ставить не нужно.
Решение программой с помощью циклов:
Напишем программу, которая проверяет все возможные комбинации значений переменных x, y, z, w (0 или 1) и выводит только те наборы, при которых заданное логическое выражение истинно. Используя вложенные циклы, код последовательно перебирает 16 вариантов, вычисляя для каждого результат выражения, и выводит на экран подходящие комбинации.
# Выводим заголовок для наглядности (значения переменных) print("x y z w") # Возможные значения переменных: 0 (False) или 1 (True) a = (0, 1) # Перебираем все возможные комбинации x, y, z, w for x in a: for y in a: for z in a: for w in a: # Проверяем, что логическое выражение с текущим набором переменных дает истину if ((not x and y) == z) and w: # Если условие выполнено, выводим текущую комбинацию print(x, y, z, w)
Решение программой с помощью itertools:
Перебор комбинаций x, y, z, w можно также организовать с помощью функции product из модуля itertools. Она генерирует все 16 вариантов комбинаций, а затем вычисляет значение выражения для каждого случая и выводит на экран подходящие комбинации.
# Импортируем функцию для декартова произведения from itertools import product # Выводим заголовок таблицы print("x y z w") # Генерируем все возможные комбинации из 0 и 1 длины 4 (для x,y,z,w) for x, y, z, w in product([0, 1], repeat = 4): # Проверяем, что логическое выражение с текущим набором переменных дает истину if ((not x and y) == z) and w: # Выводим подходящую комбинацию print(x, y, z, w)
После запуска программы получаем результат:
w x y z
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0
Заметим, что третий столбец в условии пустой и в него мы можем подставить только w, так как в других столбцах есть 0. Во второй столбец подставим z, так как только в этом столбце три нуля. Теперь обратим внимание на вторую строчку, в ней w и z равны 1 и неизвестная переменная равна 0. В выводе нашей программы это вторая строка и в ней x равен 0, а y - 1. На четвёртый столбец подставляем x, а в первый подставляем y.
Аналитическое решение:
Для истинности выражения всегда должна быть равна 1. Это третий столбец.
Если , то для истинности выражения
.
Если , то для истинности выражения
.
Получаем случая:
Сравнивая две таблицы получаем что занимает последний столбец,
занимает второй столбец,
занимает первый
столбец.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!