Тема 2. Алгебра логики – таблицы истинности

2.02 Частично заполненный фрагмент таблицы

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгебра логики – таблицы истинности
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#7077

Логическая функция F  задаётся выражением:

(y ∨ x) →  (x ≡ z)

Ниже представлен фрагмент таблицы истинности функции F,  содержащий неповторяющиеся строки, при которых фукнция F  ложна.

|-----|----|----|---|
|???--|???-|???-|F--|
|???--|-0--|-0--|0--|
|???  |??? | 0  |0  |
--------------------

Определите, какому столбцу истинности функции F  соответствует каждая переменная x,y,z.

Показать ответ и решение

1. Обратим внимание на первую строчку фрагмента таблицы. Предположим, что все переменные принимают значение 0. Тогда (y ∨ x ) = 0,  а значит F =  1.  То есть все переменные не могут быть одновременно нулями. Значит в первой ячейке первой строчки стоит 1. Предположим, что это y.  Но так как x = z = 0  в таком случае, то (x ≡ z) = 1,  то есть F =  1.  Если это z,  то так как (y ∨ x) = 0,  то импликация будет истинной. Следовательно, первый столбец занимает переменная x.

2. Рассмотрим теперь вторую строчку. Мы поняли, что одновременно нулями все переменные быть не могут, быть единицей может только x  (в то время как остальные переменные равны нулю). Значит, первую и вторую ячейку занимает единица. Теперь рассмотрим, когда y = 0, z = 1.  Но тогда x =  z = 1,  а значит, (x ≡  z) = 1.  Значит импликация будет истинной при этом. Остаётся вариант, когда y = 1,z = 0.  Данный вариант удовлетворяет условиям, так F = 0.  Следовательно, y  занимает второй столбец, а z  занимает третий.

Ответ: xyz

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!