Тема 12. Алгоритмы – анализ сложных алгоритмов

12.05 Исполнитель «Чертежник»

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгоритмы – анализ сложных алгоритмов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#6292

Исполнитель Чертёжник перемещается на координатной плоскости, оставляя след в виде линии. Чертёжник может выполнять команду сместиться на (c,d )  , где c  и d  — целые числа, которык перемещают Чертёжника из точки с координатами (x,y)  в точку с координатами (x + c,y + d)  .

Цикл

ПО В ТО Р И чи сло РА З

   посл едовател ьность ком анд

КО Н ЕЦ  П ОВ ТО Р И

Означает, что последовательность команд будет выполнена указанное число раз (число должно быть натуральным).

Чертёжнику был дан для исполнения следующий алгоритм:

НА Ч АЛ О

   см еститься на (− 32,− 73)

   П О ВТ О РИ  k РА З

     смест иться на (c,d)

     смест иться на (246,− 114)

   К О НЕ Ц П О ВТ О РИ

   см еститься на (− 16,13)

КО Н ЕЦ

Укажите количество чисел k > 1  , для которых найдутся такие значения чисел c  и d  , что после выполнения программы Чертёжник возвратится в исходную точку.

Показать ответ и решение

Будем обозначать изменение первой координаты из скобки за Δx,  второй – за Δy.

Запишем изменения координат:

Δx =  − 32 + k(c + 246 ) − 16;

Δy =  − 73 + k (d − 114 ) + 13.

Возвращение исполнителя в исходную точку для математической записи изменения координат значит, что должно выполняться равенство нулю.

Таким образом, мы имеем систему из двух уравнений:

{
  − 32 + k (c + 246 ) − 16 = 0
  − 73 + k (d − 114 ) + 13 = 0

Преобразуем выражение:

{
  k(c + 246) = 48
  k(d − 114) = 60

Можно заметить, что нам требуется определить количество чисел k, которые являются делителем и 48  , и 60  . Таких чисел пять — 2,3,4,6  и 12  .

Ответ: 5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!