Тема . ТурГор (Турнир Городов)

Комбинаторика на устном туре Турнира Городов

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тургор (турнир городов)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#123415

На клетчатой плоскости отметили 40  клеток. Всегда ли найдётся клетчатый прямоугольник, содержащий ровно 20  отмеченных клеток?

Источники: Тургор - 2020, 11.3, устный тур (см. turgor.ru)

Подсказки к задаче

Подсказка 1

Нас спрашивают, всегда ли найдётся клетчатый прямоугольник, содержащий 40 клеток. Значит, нам нужно привести либо построение такого прямоугольника в общем виде, либо контрпример. Для начала предположим, что такой прямоугольник всегда существует, тогда либо мы опишем его, либо получим противоречие. Попробуйте рассмотреть какой-нибудь пример.

Подсказка 2

Возьмите квадрат 11×11. Какие клетки можно в нем закрасить?

Подсказка 3

Посмотрите на рамку: она будет содержать ровно 40 клеток.

Подсказка 4

Собственно, надо доказать, что не найдётся прямоугольника, содержащего ровно 20 из 40 клеток рамки. Предположим, что такой прямоугольник найдётся. Что если этот прямоугольник будет содержать клетки из вертикальных сторон рамки?

Подсказка 5

Тогда горизонтальные стороны рамки по отдельности либо будут полностью включены в прямоугольник, либо не будут включены вовсе. Как это будет влиять на количество отмеченных клеток? Посчитайте все случаи и задача будет решена.

Подсказка 6

Если у Вас не получилось самостоятельно придумать прошлый пример, можете попробовать ещё раз: возьмите какой-нибудь прямоугольник и удалите из него несколько клеток.

Показать ответ и решение

Первое решение.

Рассмотрим клетчатый квадрат размером 11× 11  и удалим из него внутренний центральный квадрат 9× 9,  оставив только рамку толщиной 1. В рамке будет как раз 40 клеток. Докажем, что на плоскости нет клетчатого прямоугольника, содержащего ровно 20 из этих 40 клеток.

PIC

Допустим, такой прямоугольник есть. Пусть в нём есть клетки из обеих вертикальных сторон рамки. Тогда каждая горизонтальная сторона рамки либо полностью включена в прямоугольник, либо вовсе не включена. Если включена ровно одна горизонтальная сторона, число клеток в прямоугольнике нечётно, если обе — клеток 40 (слишком много), а если ни одной — клеток максимум 9+ 9=18  (слишком мало).

Значит, в прямоугольнике могут быть клетки лишь из одной вертикальной стороны рамки, и, аналогично, лишь из одной горизонтальной стороны рамки. Но эти стороны соседние, и суммарно в них максимум 19 клеток — слишком мало. Противоречие.

Второе решение.

Рассмотрим клетчатый прямоугольник [1,14]×[1,3],  и удалим из него клетки (7,1)  и (7,3).  Останется ровно 40 клеток. Предположим, что нашёлся клетчатый прямоугольник, в котором ровно 20 отмеченных клеток. Он может затрагивать одну, две или три горизонтали с номерами 1,2,3.

PIC

Если он затрагивает одну горизонталь, то в нём не более 14 отмеченных клеток.

Если он задевает 2 горизонтали (одна из них — вторая), то он задевает вертикаль с номером 7 (иначе в нём не более 14 клеток). Тогда эта вертикаль вносит в прямоугольник нечётное число отмеченных клеток, а остальные — чётное. Поэтому общее число отмеченных клеток в прямоугольнике нечётно.

Если он задевает все три горизонтали, то число отмеченных клеток в нём либо кратно 3 (если он не задевает 7-й вертикали), либо имеет остаток 1 при делении на 3 (иначе).

В каждом из случаев получаем противоречие.

Замечание. Возможны другие решения. Например, подходит квадрат 7× 7  с вырезанным центральным квадратом 3× 3,  но доказательство более длинное.

Ответ:

Нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!