Конструктивы в алгебре
Ошибка.
Попробуйте повторить позже
Можно ли множество из чисел
разбить на две части так, чтобы сумма чисел, попавших в одну из этих частей, отличалась от суммы чисел в другой не более, чем на (по абсолютному значению)?
Источники:
Подсказка 1
Во-первых, давайте сначала хоть как-то разобьем на две группы, а потом будем как-то менять элементы в группах, уменьшая модуль разности. Разобьем на группы так, что в первой группе в аргументе логарифма были только нечетные числа, а в другой только четные. В какой группе больше сумма? Модуль разности больше 1? Как модуль разность можно уменьшить, если мы дошли до идеи менять местами какие-то числа в разных группах?
Подсказка 2
Ну конечно, где нечетные, там сумма больше, при том, больше 1, так как у нас разность log_2(2k + 1) - log_2(2k) > 0, для всех k от 3 до 1010, а еще плюсом прибавляется log_2(5) > 1. Значит, на текущий момент модуль разности больше 1. Тогда давайте попробуем из поменять местами числа log_2(2021) и log_2(2020). Тогда у нас разность уменьшится, при том на сколько меньшее 1. Ну мы чуть-чуть улучшили ситуацию. А что нам мешает делать дальше также?
Подсказка 3
Верно, ничего. Главное понимать, что при каждой такой замене у нас будет уменьшаться разность и ни в какой момент, она не может перепрыгнуть с чего-то, что больше 1, на что-то что меньше -1, из-за того, что уменьшаем не более чем на 1. Тогда у нас рано или поздно модуль станет меньше 1, так как в начальный момент разность больше 1, а в конечный меньше -1(когда мы полностью поменяли группы). Значит, победа!
На первом шаге в группе разместим логарифмы нечетных чисел, а в группе — четных:
Обозначим через суммы чисел в группах и соответственно. Покажем, что Действительно,
Перенесем число из группы в группу а число наоборот — из в Поскольку разность уменьшилась на величину
Если для вновь образованных множеств и разность меняем местами числа и По-прежнему, разность уменьшается на величину
Если разность по процесс перекладывания чисел из одного множества в другое может быть продолжен. Если на каком-то шаге поменяет знак, то и искомое разбиение достигнуто. Это обязательно произойдет за конечное число шагов, поскольку замена множеств и местами приводит к смене знака величины
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!