Тема ТурЛом (турнир Ломоносова)

Неравенства на Турломе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела турлом (турнир ломоносова)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#68034

Положительные числа a,a ,...,a
1  2    n  таковы, что a + a +...+a > 2023.
 1   2      n  Докажите, что

         √--     3√--        n√--
a1⋅a1 +a2⋅ a2+ a3⋅ a3+ ...+ an an >1000.

Источники: Турнир Ломоносова-2023, 11.4 (см.turlom.olimpiada.ru)

Показать доказательство

Разобьем все эти числа на две группы. Число a
 k  попадает в первую группу, если a < -1.
 k  2k  А иначе попадает во вторую группу. Тогда сумма чисел в первой группе меньше, чем

1  1       1      1
2 + 4 +⋅⋅⋅+2n = 1− 2n-< 1.

Тогда сумма чисел во второй группе будет хотя бы 2023− 1= 2022.  Пусть am  находится во второй группе, тогда, так как все числа положительны:

√ --- 1
m am ≥ 2

Значит,

am ⋅ m√am-≥ am.
           2

Тогда все слагаемые из второй группы дают вклад в

a1⋅a1 +a2⋅√a2+ a3⋅ 3√a3+ ...+ an n√an >1000.

Который составляет хотя бы половину от суммы всех чисел этой группы, то есть точно больше 20222= 1011.  Следовательно, верно и требуемое.

Рулетка
Вы можете получить скидку в рулетке!