Тема Применение классических комбинаторных методов к разным задачам

Дискретная непрерывность

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела применение классических комбинаторных методов к разным задачам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#90369

Есть несколько кусков сыра разного веса и разной цены за кг. Докажите, что можно, разрезав не более двух кусков, разложить куски на     2  кучки равные по весу и по цене.

Показать доказательство

Рассмотрим произвольную окружность, разобьём её на дуги, пропорциональные весам кусков сыра. Тогда любой проведённый диаметр соответствует разрезанию не более чем двух кусков сыра (концы диаметра пересекают дуги в местах разреза), что кучки из кусков по обе стороны диаметра имеют равные массы. Осталось доказать, что один из таких диаметров даст также факт, что кучки по обе его стороны имеют одинаковую стоимость. Зафиксируем диаметр и прокрутим его по часовой стрелке на    ∘
180,  заметим что разность стоимостей куч сыра слева и справа от диаметра непрерывно изменялась и стала противоположной, значит, в некоторый момент она принимала значение 0,  что и требовалось.

Ошибка.
Попробуйте повторить позже

Задача 2#68180

Есть 8 белых кубиков одинакового размера. Марине нужно покрасить 24  грани кубиков в синий цвет, а остальные 24  грани — в красный. После этого Катя склеивает из них куб 2× 2× 2.  Если на поверхности куба столько же синих квадратиков, сколько и красных, то Катя побеждает. Если нет, то побеждает Марина. Сможет ли Марина покрасить кубики так, чтобы Катя не смогла достичь цели?

Источники: ФЕ-2023, 11.2 (см. www.formulo.org)

Показать ответ и решение

Пусть Марина как-то покрасила кубики, а Катя как-то сложила из них куб. Пусть на поверхности куба a  синих и 24− a  красных граней. Используя идею так называемой дискретной непрерывности, покажем, что Катя может постепенно привести куб к нужному ей виду. Заметим, что каждый из 8 кубиков можно повернуть так, чтобы все его грани, которые были снаружи, оказались внутри, и наоборот. Если сделать это со всеми восемью кубиками, то на поверхности окажутся как раз все те грани, которые изначально были внутри, то есть 24− a  синих и a  красных. Заметим теперь, что каждый кубик можно поворачивать постепенно - так, чтобы за один ход две внешних грани оставались на месте и лишь третья заменялась на противоположную. При таком повороте количество синих граней на поверхности меняется не более, чем на 1.  Итак, изначально синих квадратов было a,  в конце стало 24− a,  а при каждом действии менялось не более, чем на 1.  Поскольку число 12  находится между a  и 24− a,  то в какой-то момент их было ровно 12.

Ответ: нет

Ошибка.
Попробуйте повторить позже

Задача 3#74600

Датчик случайных чисел за одно действие уменьшает или увеличивает на 1 коэффициент перед x или свободный член в квадратном трёхчлене. После некоторого числа таких операций он преобразовал трёхчлен  2
x − 20x+22  в трехчлен  2
x − 202x +2  . Верно ли, что среди полученных в процессе квадратных трёхчленов есть такой, у которого целые корни? Ответ обоснуйте.

Источники: Звезда - 2022 (см. zv.susu.ru)

Показать ответ и решение

Давайте попробуем доказать, что в какой-то момент у квадратного трёхчлена будут целые корни. Для этого угадаем один из них. Если сумма коэффициентов многочлена равна 0, то есть корень x =1.  У начального многочлена        2
f1(x)= x − 20x+ 22  сумма коэффициентов равна 3, а у конечного        2
f2(x)=x − 202x +2  сумма коэффициентов равна -199, при этом за одно действие ровно один из коэффициентов меняется на 1, значит, сумма коэффициентов меняется на 1. Но если она была положительной, а потом стала отрицательной, то в какой-то момент обязательно была равна 0. То есть в какой-то момент у нас был трёхчлен       2
f(x)= x +bx+ c  , один из корней которого равен 1! А по теореме Виета второй корень равен c  — тоже целому числу =⇒ у трёхчлена 2 целых корня!

Ответ: да
Рулетка
Вы можете получить скидку в рулетке!