Дискретная непрерывность
Ошибка.
Попробуйте повторить позже
Датчик случайных чисел за одно действие уменьшает или увеличивает на 1 коэффициент перед или свободный член в квадратном трёхчлене. После некоторого числа таких операций он преобразовал трёхчлен в трехчлен . Верно ли, что среди полученных в процессе квадратных трёхчленов есть такой, у которого целые корни? Ответ обоснуйте.
Источники:
Подсказка 1
Следить сразу за двумя целыми корнями как-то сложновато. Давайте для начала попробуем доказать, что в какой-то момент будет один целый корень. Может возьмем какой-нибудь конкретный?
Подсказка 2
А чего мелочится, давайте посмотрим на 1! Если у нашего трехчлена есть корень 1, то сумма его коэффициентов равна 0. Как меняется сумма наших коэффициентов после одной операции?
Подсказка 3
Верно, она меняется на 1! Изначально сумма была 3, а в конце -199. Значит в какой-то момент она станет равной 0. Итак, в какой-то момент у нашего трехчлена будет корень 1. Докажите, что тогда у него есть второй целый корень (возможно кратный)!
Давайте попробуем доказать, что в какой-то момент у квадратного трёхчлена будут целые корни. Для этого угадаем один из них. Если сумма коэффициентов многочлена равна 0, то есть корень У начального многочлена сумма коэффициентов равна 3, а у конечного сумма коэффициентов равна -199, при этом за одно действие ровно один из коэффициентов меняется на 1, значит, сумма коэффициентов меняется на 1. Но если она была положительной, а потом стала отрицательной, то в какой-то момент обязательно была равна 0. То есть в какой-то момент у нас был трёхчлен , один из корней которого равен 1! А по теореме Виета второй корень равен — тоже целому числу у трёхчлена 2 целых корня!
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!