Тема . Верченко (криптография)

Комбинаторика на Верченко

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела верченко (криптография)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90274

Катя и Юра играют в следующую игру. Имеется пустая таблица из одной строки, состоящая из k= 20232  пустых ячеек: ( a ,...,a
 1    k  ), которые игроки заполняют числами от 0 до 2022. Первым ходит Юра, который выбирает число t  такое, что 1≤t≤ k− 1  и заполняет    t  ячеек. Второй ходит Катя, которая заполняет оставшиеся ячейки. Победитель определяется по следующему правилу: если в результате получается «счастливая» комбинация чисел - полностью заполненная таблица, в которой числа можно разбить на две непересекающиеся группы, суммы чисел в которых одинаковы, то выигрывает Катя, в противном случае выигрывает Юра. Например, комбинация ( 7,5,3,4,6  ) не является «счастливой», так как в ней присутствует нечетное число нечетных чисел. С другой стороны, комбинация (4,5,1,6,8)  является «счастливой», так как 4 +8= 5+ 1+ 6  . У кого из игроков имеется выигрышная стратегия? Ответ обосновать.

Источники: Верченко - 2024, 11.1 (см. ikb.mtuci.ru)

Показать ответ и решение

Очевидно, что достаточно рассмотреть случай, когда игрок, делающий первый ход, заполняет максимально возможное число ячеек, равное k− 1  . Расположим эти k− 1  число в порядке не убывания: ai1 ≤ai2 ≤ ⋅⋅⋅≤ aik−1  . Здесь в индексах указаны номера позиций, на которых стоят эти числа в таблице. Образуем два множества позиций, которые заполнены: {i1,i3,...} и {i2,i4,...} , беря указанные числа через одно. Тогда суммы чисел на этих позициях могут отличаться друг от друга не более, чем на 2022. Поэтому оставшуюся незаполненной позицию можно заполнить числом от 0 до 2022 так, чтобы получилась «счастливая» комбинация.

Ответ: Катя

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!