Алгебра и многочлены на Верченко
Ошибка.
Попробуйте повторить позже
Пусть — двоичный вектор длины 8. Обозначим
— циклический сдвиг вектора
на
позиций вправо. Например, если
то
При этом считаем, что
Под суммой векторов
и
будем понимать вектор
Здесь — стандартная операция сложения битов:
Пусть
Найдите такие, что при любом исходном векторе
выполняется равенство
Источники:
Заметим, что для любого натурального числа
. Вектору
взаимно однозначно соответствует
многочлен
Тогда циклический сдвиг вектора на
позиций вправо равносилен умножению многочлена
на
и приведению степеней
мономов по модулю
.
Вектору соответствует многочлен
. Таким образом, нахождение
таких, что
равносильно нахождению многочлена
со свойством
(с учётом приведения степеней
мономов по модулю
). Найти многочлен
можно методом неопределённых коэффициентов, но быстрее из следующего
алгоритма:
Следовательно,
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!