Последовательности, функции и их кодирование на Верченко
Ошибка.
Попробуйте повторить позже
Имеется устройство, которое строит последовательность чисел следующим образом: первые два члена
и
мы задаем
самостоятельно, а последующие члены устройство вычисляет так:
Здесь
— – некоторая фиксированная ключевая последовательность. При этом все числа
и
являются
целыми, лежащими в пределах от 0 до 32 включительно. (Если в процессе вычислений получится число, превосходящее
32, то результат будет заменен его остатком от деления на 33; например,
С помощью этого устройства
построили две последовательности
и
по первым членам
и
Верно ли, что найдётся ключевая последовательность
и некоторое целое
большее 0, такие, что выполняются
условия:
a)
б)
Решение обоснуйте.
Источники:
Пункт а), подсказка 1
У вас есть равенство двух членов одной последовательности двум другим. А как можно выразить, например предыдущий член последовательности через два соседних? Попробуйте так прийти к противоречию)
Пункт б), подсказка 1
Мы понимаем, что последовательности устроены одинаковым образом, так еще и ключевая последовательность у них одинаковая. Что можно сделать, чтобы вообще исключить эту последовательность?
Пункт б), подсказка 2
Вычесть одну последовательность из другой! По факту, в этой последовательности тогда нужно будет понять, есть там единица, или нет. В таком случае посмотрите на первые члены и на то, по какому модулю у нас все происходит и придите к противоречию)
а) Для всех
Поэтому, если , то
, что противоречит условию.
б) Удобно перейти к разностям полублоков (везде далее действия с полублоками (умножение, сложение и вычитание)
производятся по модулю
) и выяснить, может ли 1 появиться в
. Из уравнения шифрования
получаем после вычитания
что последовательность разностей не зависит от ключа . По условию
, поэтому все члены
последовательности будут делиться на
, и единицы там не будет.
а) нет
б) нет
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!