Тема . ПитерГор (Санкт-Петербургская олимпиада)

Планиметрия на Питергоре

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела питергор (санкт-петербургская олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71959

Точка M  — середина основания AD  трапеции ABCD,  вписанной в окружность ω.  Биссектриса угла ABD  пересекает отрезок AM  в точке K.  Прямая CM  вторично пересекает окружность ω  в точке N.  Из точки B  проведены касательные BP  и BQ  к описанной окружности треугольника MKN.  Докажите, что прямые BK,MN  и P Q  пересекаются в одной точке.

PIC

Источники: СпбОШ - 2021, задача 11.6(см. www.pdmi.ras.ru)

Показать доказательство

Решение 1.

Пусть луч BK  пересекает описанную окружность в точке T  — середине дуги AD.  Заметим, что

∠BT N = ∠BCN = ∠AMN.

Следовательно, описанная окружность треугольника MKN  проходит через точку T.  Кроме того, ∠KMT  прямой, поэтому прямая BT  содержит диаметр этой окружности. Пусть прямая CN  пересекает этот диаметр в точке X,  а прямая PQ  пересекает его в точке X ′.

PIC

Для решения задачи требуется установить, что X =X ′.  Пусть O  и r  — центр и радиус этой окружности. Точка X ′ обладает известным свойством: OB ⋅OX ′ = r2.  Поэтому нам осталось проверить, что OB ⋅OX = r2.

Обозначим

ϕ = ∠AKB = ∠OKM  = ∠OMK,

ψ =∠KMB  = ∠CMD  = ∠XMK.

Тогда ∠KBM   =ϕ − ψ =∠XMO.  Это означает, что треугольник OMX  и OBM  подобны и OB ⋅OX = OM2 = r2.

Решение 2.

Как и предыдущем решении, докажем, что X = X′.  Для этого достаточно проверить, что

(B,X,K,T)= (B,X′,K,T ).

PIC

Мы докажем, что обе эти четвёрки гармонические. Заметим, что четырёхугольник KQT P  гармонический, так как касательные в точках   P  и Q  пересекаеются на KT.  Проецируя эту четвёрку точек из точки P  на прямую BT,  получим (B,X′,K,T)= −1.  С другой стороны, проецируя четвёрку B,X,K,T  из точки M  на прямую BC,  получим

(B,X,K,T )=(B,C,L ,M ′),
                ∞

где L∞ — бесконечно удалённая точка направления BC.  Осталось заметить, что, так как T  — середина дуги AD,  а M  — середина отрезка AD,  прямая MT  — серединный перпендикуляр к основанию вписанной трапеции ABCD.  Следовательно, M ′ — середина отрезка BC  и (B,C,L∞,M ′)= −1.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!