Планиметрия на Питергоре
Ошибка.
Попробуйте повторить позже
В неравнобедренном треугольнике проведена биссектриса
. Диаметр
его описанной окружности перпендикулярен прямой
(порядок точек на описанной окружности
). Окружность, проходящая через точки
и
, пересекает отрезки
и
в точках
и
соответственно. Докажите, что если
, то
.
Источники:
Подсказка 1
Если сделать аккуратный чертеж, то кажется, что продолжения ХТ, АК и YС пересекаются в одной точке на описанной окружности треугольника АВС.
Подсказка 2
Предыдущий факт сложно доказывать напрямую, стоит применить обратный ход.
Подсказка З
Обозначим пересечение луча АК с описанной окр-тью АВС за L. Пересечение LХ и LY с ВС обозначим Т₁ и Z₁. Хотим показать, что XТ₁Z₁Y является вписанным. Используя, что дуги ВL и LС равны (из-за биссектрисы), можно посчитать сумму противоположных углов данного четырехугольника. Следующий шаг — показать равенство Т₁К и КZ₁.
Подсказка 4
Чтобы показать равенство Т₁К и КZ₁:
Подсказка 5
Осталось показать, что такой четырехугольник единственный. Пересечением чего является центр описанной окружности вписанного четырехугольника? Посмотрите, где лежит центр окружности описанной около XT₁Z₁Y.
Применим обратный ход. Обозначим пересечение луча с
за
Пересечение
и
с
обозначим
и
Теперь
нам надо доказать, что
вписанный и
так как получится, что точки
и
из условия совпадают с
ними.
Тогда получили, что вписанный, так как внутренний угол равен противоположному внешнему. Теперь обратим внимание на
то, что треугольники
и
подобные, а в прямоугольном треугольнике высота и медиана образуют равны углы со сторонами.
Поэтому так как
высота в треугольнике
то
является медианой в треугольнике
Значит,
середина
откуда получаем то, что мы хотели в начале.
Заметим, что четырехугольник из условия единственный, ведь его центр лежит на серединном перпендикуляре к и на
перпендикуляре к
восставленному в
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!