Тема . ПитерГор (Санкт-Петербургская олимпиада)

Планиметрия на Питергоре

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела питергор (санкт-петербургская олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#89865

В треугольнике ABC  проведена медиана BM  . На продолжении стороны AC  за точку C  отмечена такая точка D  , что BD = 2CD.  Описанная окружность треугольника BMC  пересекает отрезок BD  в точке N.  Докажите, что AC +BM  >2MN.

Показать доказательство

PIC

По условию BNCM  — вписанный четырехугольник. Следовательно, ∠DMB  =∠DNC,  поэтому треугольники DMB  и DNC  подобны.

Стало быть, BMCN = BCDD-=2  и, значит, BM  = 2CN  .

Таким образом, AC +BM  =2(MC + CN )  и осталось доказать, что MC + CN >MN  . Но это просто неравенство треугольника для △MNC  .

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!