Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела итмо (открытка)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#74582

Дана четырёхугольная пирамида OABCD,  в основании которой лежит параллелограмм ABCD.  Плоскость α  пересекает рёбра OA,  OB,  OC  и OD  пирамиды в точках  ′
A ,   ′
B,    ′
C и   ′
D соответственно. Известно, что

OA′  1 OB ′  1 OC′   1
OA-= a,OB--= b,OC--= c

Найдите

 V
V-OA′BC′D′-′
 OA BC D

Источники: ИТМО-2022, 11.6 (см. olymp.itmo.ru)

Показать ответ и решение

PIC

Отношение объём пирамид с общим трёхгранным углом равно произведению отношений длин рёбер, исходящих из этого угла,

VOA′B′C′= -1-
VOABC    abc

VOA′C′D′= -t,
VOACD    ac

где    OD-′
t=  OD .  Поскольку треугольники ABC  и ACD  равны,                1
VOABC = VOACD = 2VOABCD.  Значит,

VOA′B ′C′D′  VOA′B′C′  VOA ′C′D′
-VOABCD--= VOABCD- +-VOABCD-=

  VOA′B′C′  VOA′C′D-′  -1-- -t-
= 2VOABC +  2VOACD  = 2abc +2ac

Дальше можно было бы строить сечение и использовать для подсчёта отношений теоремы Фалеса и Менелая, но мы воспользуемся координатно-векторным методом с базисными векторами −→ −−→ −−→
OA,OB,OC.

ABCD  — параллелограмм, поэтому −−→   −→   −→  −−→
CD  =BA = OA −OB,  и, следовательно, −−→  −−→   −→  −−→
OD =OC + OA −OB.

Если точка X  принадлежит плоскости A′B′C′,  а −−O→X = x−O→A + y−−O→B +z−O−→C,  коэффициенты x,y  и z  удовлетворяют уравнению ax+ by+ cz = 1  (это, как известно, уравнение плоскости, даже если система координат не декартова, а точки A′,B ′ и C ′ этому уравнению, очевидно, удовлетворяют).

−O−D→′ = t−O−→D = t−−O→C +t−O→A − t−−O→B

at− bt+ ct= 1

     1
t= a−-b+c-

Получаем

VOA′B′C′D′  -1--  ----1-----  -a−-b+-c+b-  ----a+-c---
 VOABCD  = 2abc + 2ac(a− b+c) = 2abc(a− b+c) = 2abc(a− b+ c)

Обратная величина является ответом к задаче.

Ответ:

 2abc(a−-b+-c)
    a+ c

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!