Стереометрия на ИТМО
Ошибка.
Попробуйте повторить позже
Сфера радиуса 10 вписана в каркас тетраэдра (т.е. касается всех его рёбер). Сумма длин рёбер тетраэдра составляет 180. Докажите, что объём тетраэдра не превосходит 3000.
Источники:
Обозначим тетраэдр центр сферы, вписанной в каркас —
а саму сферу —
Объём тетраэдра равен сумме объёмов маленьких
тетраэдров
и
Пересечение и плоскости
это вписанная окружность треугольника
Обозначим за
её центр, тогда
— высота
тетраэдра
Пусть
— радиус сферы
— радиус вписанной окружности треугольника
Тогда выполняется равенство
Тогда
где — полупериметр треугольника
По неравенству о среднем геометрическом и среднем квадратичном
получаем
то есть
Таким образом,
Складывая объёмы четырёх маленьких тетраэдров, получаем
а сумма полупериметров граней это в точности сумма длин рёбер тетраэдра. Значит,
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!