Неравенства на ИТМО
Ошибка.
Попробуйте повторить позже
Положительные числа и таковы, что Какое наименьшее значение может принимать величина
Источники:
Подсказка 1
Нам нужно доказать необычное неравенство, поэтому придётся немного поколдовать. Понятно, что надо будет как-то пользоваться неравенствами о средних. Но пока непонятно как. У нас есть информация по поводу суммы x, y и z. А как можно по-другому переписать это неравенство для получения нужных степеней и коэффициентов?
Подсказка 2
Давайте ещё немного вспомогательных намёков. Сумма чисел у нас равна пяти. Тогда удобно сделать и количество слагаемых пять штук. А учитывая, что x и y во второй степени, как хорошо бы преобразовать равенство?
Подсказка 3
Верно, можно записать его в виде x/2 + x/2 +y/2 +y/2 +z=5. Думаю, что у вас получилось! А теперь осталось только применить неравенство между средним арифметическим и средним квадратическим для такого набора и неравенство между средним арифметическим и средним геометрическим. Аккуратно посчитайте, и победа!
Перепишем условие как
Теперь запишем для этих пяти чисел неравенство о среднем арифметическом и среднем квадратичном:
Следовательно,
Теперь запишем для этих же чисел неравенство о среднем арифметическом и среднем геометрическом:
Значит,
Получаем, что
Минимум достигается, когда все числа, для которых применяются неравенства о средних, равны между собой, то есть
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!