Логарифмы на КФУ
Ошибка.
Попробуйте повторить позже
а) Может ли для некоторых оказаться, что
б) Может ли для некоторых оказаться, что
в) Могут ли при каких-то выполняться оба равенства?
Источники:
Подсказка 1
Вспомните, как выглядят свойства логарифма, вас в этой задаче пытаются немного запутать!
Подсказка 2
У нас две неизвестные и одно уравнение (в пунктах а и б по отдельности). Обычно когда переменных больше, чем уравнений, то у нас есть решения и их довольно много.
Подсказка 3
Чтобы придумать пример, можно взять a равным какому-то "хорошему" числу и попытаться решить уравнение относительно b. Таким образом вы найдёте примеры для пунктов а и б.
Подсказка 4
Теперь давайте подумаем про пункт в. У нас уже два уравнения и две неизвестные. Обычно это означает, что если решения и есть, то их мало, а может их и вовсе нет. Поэтому тут метод подбора уже скорее всего не сработает, нужно попытаться решить систему из двух уравнений...
Подсказка 5
У вас вряд ли получится решить эту систему так, как вы обычно решаете логарифмические уравнения, скорее всего, понадобятся оценки и понимание монотонности для доказательства того, что решений нет. Самый топорный способ: выразить a через b, подставить в другое уравнение, получить уравнение относительно b и показать (например, с помощью производной), что у него нет решений. Однако можно решить и более красиво через оценки...
Ясно, что числа и
положительны.
a) Условие можно переписать в виде . Если
, то
,
. Например,
при
имеем
,
,
.
б) Равенство сводится к соотношению . Например, при
получаем, что
в) Условие вида можно переписать в виде
. Предположим, что пункты а) и б) одновременно выполняются.
Заданные неравенства можно переписать в виде
Из первого равенства следует, что и
имеют одинаковый знак. То есть либо они оба положительны (тогда
), либо оба отрицательны (
). В силу положительности чисел
и
имеем
.
Если
Если
Пришли к противоречию.