Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела изумруд
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68190

В неравнобедренном треугольнике ABC  точка K  — середина стороны AB,M  — точка пересечения медиан, I  — центр вписанной окружности. Известно, что         ∘
∠KIB = 90 . Докажите, что MI ⊥ BC  .

Источники: Изумруд-2022, 11.4 (см. izumrud.urfu.ru)

Показать доказательство

PIC

Давайте поймем, как реализовать странное условие про угол. Вспомним про то, что внутренняя и внешняя биссектрисы одно и того же угла перпендикулярны. Тогда давайте дополнительно отметим центр вневписанной окружности данного треугольника, касающейся стороны BC.  Пусть это Ia.  Значит,

∠IaBI = ∠BIK = 90∘ ⇐⇒ BIa ∥ KI

Так как AK = KB,  то IK  — средняя линия треугольника ABIa.  По лемме о трезубце W  — середина IIa,  следовательно, CI =IIa = 2IW.  Тогда

-AI = 2
IW    1

Пусть P  — середина стороны BC.  Тогда по свойству медианы:

AM- = 2
MP    1

Тогда

MI ∥W P

Так как W  — середина дуги BC,  не содержащей A,  то

WP ⊥ BC

А это означает требуемое.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!