Тема . ПитерГор (Санкт-Петербургская олимпиада)

Теория чисел на Питергоре

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела питергор (санкт-петербургская олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#70483

Будем говорить, что набор чисел a ,...,a
 1     m  сильнее набора чисел b,...,b ,
 1    n  если среди всех неравенств вида a > b
 i   j  количество верных неравенств не менее чем в 2  раза превосходит количество неверных. Докажите, что не существует трех наборов A,B,C,  таких, что  A  сильнее B,  B  сильнее C,  C  сильнее A.

Источники: СпбОШ - 2022, задача 11.4(см. www.pdmi.ras.ru)

Показать доказательство

Предположим противное. Пусть наборы

A = (a1,...,al),B = (b1,...,bm ),C =(c1,...,cn)

таковы, что A  сильнее B,B  сильнее C,C  сильнее A.  Можно считать, что число a1  наибольшее среди всех чисел этих трёх наборов. Для каждой тройки индексов i,j,k(1 ≤i≤ l,1≤ m,1≤ k≤ n)  посчитаем, сколько верных увтерждений имеется среди неравенств a > b,b >c ,c >a ,
 i  j j   k k   i  просуммируем эти числа по всем i,j,k  и обозначим полученную сумму через S.  Тогда

S ≤ 2lmn, (∗)

поскольку всего имеется lmn  троек и в каждой тройке не больше двух верных неравенств. Далее заметим, что каждое неравенство ai > bj  присутствует в n  таких тройках, поэтому в сумме S  оно учтено n  раз. По предположению среди неравенств ai > bj  не меньше 2lm
3  верных, поэтому вклад всех неравенств вида ai >bj  в сумму S  не меньше чем 2lmn.
3  Аналогично вклад всех неравенств вида b > c
 j   k  в сумму S  и вклад всех неравенств вида c > a
 k   i  в сумму S  также не меньше чем 2lmn.
3  Следовательно, суммарное количество верных неравенств не меньше чем 3⋅ 2lmn ≥S.
  3

Сопоставляя это с неравенством (∗),  заключаем, что в проделанных подсчётах все оценки являются равенствами. В частности, имеется в точности 2
3mn  верных неравенств вида bj > ck,  а в каждой тройке ai > bj,bj >ck,ck >ai  ровно два верных неравенства.

Рассмотрим теперь тройку чисел a1,bj,ck.  Среди неравенств a1 >bj,bj > ck,ck >a1  должно быть ровно два верных. Поскольку a1  — наибольшее число неравенство ck > a1  неверно, т.е. выолняется неравенство bj > ck.  Значит, все неравенства вида bj > ck  верные и всего их mn  штук. Но это противоречит тому, что их 2
3mn.  Стало быть, наше предположение неверно.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!