Теория чисел на Питергоре
Ошибка.
Попробуйте повторить позже
Дано натуральное число На доске написаны числа от
до
Среди них
чисел покрасили в красный цвет, а какие-то
из остальных — в синий. Оказалось, что сумма красных чисел делится на сумму синих. Докажите, что
делится на
Подсказка 1
Напишите оценки на сумму красных и сумму синих чисел.
Подсказка 2
Докажите, что Sa < (N+1)N³ и Sb ≥ N³. Поймите, что-нибудь про отношение суммы красных к сумме синих.
Подсказка 3
Вы доказали, что если a не делится на b, то отношение сумм хотя бы N+1. Докажите, что отношение сумм не может быть больше N.
Подсказка 4
Пусть Sa = aN³+a₁ и Sb аналогично, k — отношение сумм, докажите, что |b₁k-a₁| ≥ N³.
Подсказка 5
Теперь соберите всё вместе и найдите противоречие)
Если то
делится на
Поэтому можно считать, что
тогда
Пусть сумма чисел равна
а сумма
чисел равна
По условию
делится на
Обозначим их
отношение через
покажем, что
Действительно,
(последний переход несложно проверить), и значит, Поскольку
получим равенство
или, что то же самое,
Если не делится на
, т.е.
то
и значит,
Проверим, что на самом деле выполнено
неравенство
т.е. что число
не может быть слишком крупным отрицательным числом. Действительно,
и
и поэтому
Тогда
Здесь как раз применяем, что В итоге, противоречие.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!