Теория чисел на Питергоре
Ошибка.
Попробуйте повторить позже
Дано -значное число
и произвольное натуральное число
Докажите, что найдется такое не более чем
-значное число
натуральное число
что любое число вида
— составное.
Источники:
Из признака делимости на (необходимо рассмотреть знакочередующуюся сумму блоков по
цифре с конца) следует, что
числа в которых количество
в записи отличается на четное число имеют одинаковые остатки при делении на
Заметим, что а еще по лемме об уточнении показателя
не делится на
поэтому у
есть простой
делитель
отличный от
Достаточно сделать так, чтобы и
делились на
и на
соответственно. Такое
существует и не превосходит
по китайской теореме об остатках.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!