Тема . ПитерГор (Санкт-Петербургская олимпиада)

Комбинаторика на Питергоре

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела питергор (санкт-петербургская олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71261

Ученики школы посещают m  кружков. В каждый кружок ходит ровно mk  детей. Докажите, что можно рассадить всех учеников школы по k  кабинетам так, чтобы в каждом кабинете был хотя бы один представитель каждого кружка ( m  и k  — натуральные числа).

Источники: СпбОШ - 2017, задача 11.1(см. www.pdmi.ras.ru)

Показать доказательство

Выберем k  учеников из первого кружка, рассадим их в разные кабинеты. Выберем k  других человек из второго кружка и рассадим их, и так далее.

_________________________________________________________________________________________________________________________________________________________________________________

Замечание. Ученики школы посещают N  кружков. В каждый кружок ходит ровно mk  детей. Всех учеников можно рассадить по     k  кабинетам так, чтобы в каждом кабинете был хотя бы один представитель каждого кружка, даже если N  существенно больше m.  Ниже мы докажем, что это можно сделать при      m∕2
N ≈ e   .

Рассмотрим k+ a  комнат, где число a  определим позже. Посадим каждого школьника в одну из этих комнат, выбирая ее случайно (все комнаты равновероятны). Назовем комнату подозрительной, если в ней оказались представители не всех кружков. Предположим, что случилась УДАЧА: оказалось не более чем a  подозрительных комнат. Тогда имеется k  неподозрительных комнат, мы можем назвать их кабинетами, и искомая рассадка найдена. УДАЧА заведомо иногда случается, если математическое ожидание E  числа подозрительных комнат меньше a+ 1.  Заметим, что E  равно количеству комнат k+ a,  умноженному на вероятность того, что конкретная комната подозрительна. Эта вероятность, в свою очередь, не превосходит  (      )km
N 1 −k1+a    .  Итак, если

       (       )
N (k+a) 1 −--1-  km < a+ 1
           k +a

то при таком N  требуемая рассадка существует. Уже при a =k  получается экспоненциальное по m  выражение, наилучшего результата — около em-−1
 m  — можно добиться при a ≈ -k-.
    m−1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!