Тема . ОММО (Объединённая Межвузовская Математическая Олимпиада)

Последовательности и прогрессии на ОММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#88527

Третий, четвёртый, седьмой и последний члены непостоянной арифметической прогрессии образуют геометрическую прогрессию. Найдите число членов этой арифметической прогрессии.

Подсказки к задаче

Подсказка 1

Так-с, что же делать? Введём разность арифметической прогрессии и знаменатель геометрической, запишем все уравнения из условия.

Подсказка 2

Теперь задачка свелась просто к работе с системой уравнения. Какие мы знаем классические трюки, когда видим перед собой систему уравнений? Правильно, можно попробовать вычесть из одного уравнения другое. Такими методами можно быстро найти знаменатель геом. прогрессии.

Показать ответ и решение

Пусть a
 n  n  -ый член арифметической прогрессии, q  — знаменатель геометрической прогрессии. По условию

( a = a ⋅q
|{  4   3
|( a7 = a4⋅q
  an =a7⋅q

Пусть d  — разность арифметической прогрессии, тогда имеем

(|  a3+ d=a3 ⋅q
{  a3+ 4d =(a3+ d)⋅q
|(  a + (n− 7)⋅d= a ⋅q
    7            7

Вычитая из второго уравнения первое, получаем

3d= dq

Так как прогрессия непостоянная, то можем поделить на d⁄= 0  и получить

q = 3

Подставляя это значение в систему, получаем

a3 = d a7 = 9d-
    2 ,    2

a +(n− 7)⋅d= 3a
 7            7

(n− 7)⋅d= 29d-
           2

Поделив на d⁄= 0  , имеем

n− 7= 9

n =16
Ответ: 16

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!