Количество, сумма, произведение делителей
Ошибка.
Попробуйте повторить позже
Сумма двух различных натуральных делителей натурального числа равна 100. Какое наименьшее значение может принимать число (Среди указанных делителей могут быть единица и само число.)
Подсказка 1
Предположим, что мы взяли какие-то два делителя числа n числа и сложили их. Если каждый из этих двух делителей меньше n, то он меньше n “в сколько-то раз”. Какой вывод мы тогда сможем сделать для их суммы?
Подсказка 2
Да, в таком случае сумма этих двух делителей, равная ста, будет меньше, чем n, следовательно, n больше ста. Это не очень удовлетворительный результат, потому что первый пример, приходящий в голову — 99+1 — это пример меньше, чем на 100. Какой вывод можно отсюда сделать?
Подсказка 3
Тогда получается, что один из делителей заведомо равен самому числу. В таком случае, введя d как меньший делитель, можно записать условие в виде достаточно простого выражения!
Подсказка 4
Из нашей записи получится, что n/d+1 должно быть делителем числа 100. При этом для каждого фиксированного d чем больше n/d, тем больше n. Отсюда и получим искомый ответ!
Если один из наших делителей — само число , а второй — некоторое число и , то мы получаем
Чем больше, тем и само больше.
Наименьшее такое, что является делителем 100, это 3. При таком получаем .
Если же нет среди двух наших делителей, то , откуда .
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!