Количество, сумма, произведение делителей
Ошибка.
Попробуйте повторить позже
Найдите сумму максимальных нечётных делителей всех чисел от 601 до 1200 включительно.
Источники:
Подсказка 1
Зададимся вопросом, что означает тот факт, что у двух чисел из отрезка [601; 1200] одинаковый наибольший нечётный делитель. Если это так, как могут отличаться эти два числа?
Подсказка 2
Если у двух чисел одинаковый наибольший нечётный делитель, то состав нечётных простых, в них входящих, идентичен у двух чисел, и отличаться эти числа могут только степенью вхождения двойки. Может ли такое случиться для двух чисел из данного отрезка?
Подсказка 3
Такая ситуация невозможна, ведь на отрезке нет чисел, которые отличаются друг от друга хотя бы в два раза. Какой вывод можно сделать из этого рассуждения?
Подсказка 4
Тогда мы получили, что искомые делители у всех наших чисел различны. Делитель не может быть больше самого числа, поэтому мы не получим делители, превосходящие 1200. Тогда не остаётся выбора, какие нечётные числа брать :)
Пусть — сумма максимальных нечётных делителей чисел на отрезке , причём является максимальным нечётным делителем числа для всех
Пусть — натуральное нечётное число на отрезке . Докажем, что совпадает с для некоторого . Предположим противное. Рассмотрим ряд
Поскольку , то существует натуральное число такое, что , а , что невозможно.
Таким образом, каждое нечётное число на отрезке совпадает с для некоторого . Осталось заметить, что на отрезке каждое второе число является нечётным, следовательно, количество нечётных чисел равно 600, ровно из стольких слагаемых состоит , то есть никаких других чисел там нет. Наконец, по формуле суммы членов арифметической прогрессии
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!