Тема . ШВБ (Шаг в будущее)

Тригонометрия на ШВБ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела швб (шаг в будущее)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#70301

Решите уравнение

  4         2019         2018
sin (2025x)+ cos  (2016x)⋅cos   (2025x) =1

Источники: ШВБ-2018 (см. olymp.bmstu.ru)

Показать ответ и решение

ОТТ: sin2(2025x)+cos2(2025x)= 1

Чтобы из ОТТ получить исходное, нужно домножить первое слагаемое на   2
sin (2025x)  , а второе на   2016        2019
cos   (2025x)⋅cos  (2016x)  . Заметим, что при этом левая часть точно не увеличилась. Следовательно, чтобы сохранилось равенство, возможны только следующие случаи:

Либо одно из слагаемых 0 и тогда не важно, на что его домножаем, но важно, чтобы другое слагаемое было равно 1 и домножилось на 1. Либо домножили оба слагаемых на 1.

                     2              2
1)1+ 0= 1.Заметим, чтоsin(2025x)= 1 при cos (2025x)=0.  Поэтому имеем:

                 π    πk
cos(2025x)=0 ⇔ x= 4050 + 2025

2)0+ 1= 1:

{                              {                 {
   cos2016(2025x)⋅cos2019(2016x)= 1 ⇔    cos(2025x)=±1  ⇔   2025x= πn,n ∈ℤ   ⇒
   cos2(2025x)= 1                    cos(2016x)=1       2016x= 2πk,k∈ ℤ

⇒ 2025k= 1008n⇒ k ...1008⇒ k =1008t,t∈ ℤ

Подставим в систему, получим: x = πt.  Проверим, что подходит:

2025πt= πn⇔ n = 2025t,n∈ ℤ

3) Оба слагаемых домножили на 1:

{ sin2(2025x)= 1
  cos2019(2016x)⋅cos2016(2025x)= 1

sin2(2025x)= 1⇒ cos(2025x)= 0

Система не имеет решений.

Ответ:

{-π-+ -πk,πk,k ∈ℤ}
 4050  2025

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!