Тема . ШВБ (Шаг в будущее)

Тригонометрия на ШВБ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела швб (шаг в будущее)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#77696

Решите неравенство

     ∘ ---- ∘-------2--
cosx−   siny−  sin y− sinx ≥1

Источники: ШВБ - 2019, 11.6 (см. olymp.bmstu.ru)

Подсказки к задаче

Подсказка 1

Сделаем замену u = cos(x) и v = sin(y). К какому неравенству придём и как будем его решать?

Подсказка 2

u - sqrt(v) >= sqrt(u^2 + v - 1) + 1 >= 0. Каким неравенством связаны u и v? Как будем решать предпоследнее неравенство?

Подсказка 3

Возведем обе части в квадрат! Теперь-то мы знаем, как применить связь между u и v.

Подсказка 4

Получается, что u*sqrt(v) = 0 и u^2 + v - 1 = 0. Подумаем, какие решения имеет данная система? Мы на финишной прямой!

Показать ответ и решение

Так как

          ∘ ---- ∘-------2--
cosx≤ 1,  −  siny−  sin y− sin x≤ 0,

то сумма этих выражений может быть не меньше 1 только в случае равенства:

{ cosx= 1
    √---- ∘ -------2--
  −  siny−   siny− sin x= 0

{ cosx =1, sin2x =0
      siny =0

{
   x= 2πn,n ∈ℤ
   y =πk,k∈ ℤ
Ответ:

 (2πn;πk),n,k∈ ℤ

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!