Тема . Делимость и делители (множители)

Оценки для доказательства делимости

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела делимость и делители (множители)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#67958

Найдите все простые p,  для которых числа p+ 1  и p2+1  являются удвоенными квадратами натуральных чисел.

Источники: СПБГУ-23, 11.2 (см. olympiada.spbu.ru)

Подсказки к задаче

Подсказка 1

Пусть p+1 = 2x², p²+1 = 2y². Вот давайте вычтем эти два выражения: будет p(p-1) = 2(y-x)(y+x). Про что можно тут подумать, раз слева стоит простой множитель?

Подсказка 2

Про делимости! У нас делится на p либо 2, либо y-x, либо y+x. Если проверить p = 2, то он не подойдет. А может ли y-x делится на p?

Подсказка 3

Можно заметить, что т.к. p+1 = 2x², то x<p, а также y<p и x<y. Тогда y-x тем более < p и он на него не делится. Остается, что y+x делится на p. Используя наши оценки на x и y, поймите, чему равно y+x и решите полученную системку!

Показать ответ и решение

Пусть

       2   2      2
p+1 =2x и p +1 =2y ,

тогда

          2   2
p(p− 1)= 2(y − x )= 2(y− x)(y+ x)

Поэтому одно из чисел 2, y− x  и y+ x  кратно p.  Если 2 кратно p,  то p= 2,  что невозможно, поскольку p+1 =3  не является удвоенным квадратом.

Первый способ.

Из неравенства x < y < p  следует, что

x+ y = p

Таким образом, имеем систему из двух уравнений

(
{ x +y = p
(
  2(y− x) =p− 1

Решаем её

(                 (
{  x+ y = p       {  2x +2y = 2p                  p+1-
(  2(y − x)= p− 1 ⇒ ( 2y − 2x= p− 1 ⇒ 4x =p+ 1⇒ x = 4

Значит,

       ( p+1-)2
p +1= 2   4

Следовательно, p= 7.

Второй способ.

Если y− x  делится на p,  то

y +x >y− x≥ p⇒ 2(y− x)(y+ x)≥2p2 > p(p − 1)

Значит, это невозможно. Следовательно, y+x  делится на p.  Заметим, что

y2= p2+-1> p2−-1= p− 1
x2  p +1   p +1

Тогда если p ≥11,  то

y2 > 10x2 ⇒ y > 3x

Значит,

2(y− x)> y+ x≥ p

Стало быть,

2(y− x)(y+ x) >p2 > p(p +1)

Но этого не может быть. Таким образом, осталось рассмотреть случаи p= 3,p =5  и p= 7.  В первых двух из них p+ 1  не является удвоенным квадратом, а p= 7  подходит.

Ответ: 7

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!