Тема . Делимость и делители (множители)

Оценки для доказательства делимости

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела делимость и делители (множители)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#81751

Найдите все пары целых чисел (x,y),  для которых числа x3 +y  и x+ y3  делятся на x2+ y2.

Показать ответ и решение

Пусть d =  НОД (x,y).  Тогда x= du, y = dv,  где u  и v  взаимно просты. По условию d3u3+ dv  делится на d2,  поэтому v  делится на d.  Аналогично u  делится на d.  Значит, d= 1,  то есть x  и y  взаимно просты. Тогда и число  2   2
x + y  взаимно просто с y.  Число  ( 2  2)  (3   )
x x +y  −  x +y = y(xy − 1)  делится на  2   2
x + y.  Поскольку  2   2
x + y  и y  взаимно просты, то xy− 1  делится на  2   2
x + y .  Но это возможно только при |xy|≤ 1.  Действительно, в противном случае                  2   2
0 <|xy− 1|< 2|xy|≤x + y .  Непосредственная проверка всех оставшихся вариантов (x,y =0,±1)  дает восемь решений (±1,±1),(0,±1),(±1,0).

Ответ:

 (1,1), (1,0), (1,−1), (0,1), (0,−1), (−1,1), (−1,0), (−1,−1)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!