Стереометрия на Энергетике
Ошибка.
Попробуйте повторить позже
Две сферы касаются друг друга внешним образом и каждая из них касается внутренним образом большей сферы. Радиус одной в два
раза, а другой — в три раза меньше радиуса наибольшей сферы. В точке касания малых сфер друг с другом построена
касательная плоскость к ним. Найдите расстояние от этой плоскости до центра наибольшей сферы, если ее радиус равен
Источники:
Проведём сечение описанной композиции плоскостью, проходящей через центры трех сфер. Искомое расстояние будет длиной отрезка
на этой плоскости.
Пусть радиусы малых окружностей равны и
Тогда радиус наибольшей (внешней) равен
(дано:
). Рассмотрим
Его стороны равны
и
следовательно, он прямоугольный.
Обозначим точку пересечения искомой хорды с отрезком через
а с отрезком
через
Опустим из центра наибольшей
окружности перпендикуляр
на искомую хорду (отрезок общей касательной). Тогда искомая хорда делится точкой
пополам и
перпендикулярна отрезкам
и
Прямоугольные треугольники подобны. Поэтому
, откуда
и
Далее, откуда
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!