Последовательности и прогрессии на Изумруде
Ошибка.
Попробуйте повторить позже
Геометрическая прогрессия , в которой все члены различны, такова, что числа в указанном порядке составляют арифметическую прогрессию. Какое наибольшее значение может принимать
Источники:
Подсказка 1
Для начала давайте подумаем над тем, какое ориентировочно может быть n (а если поймем как-то прикидками, какое n, то поймем как его примерно получать). Понятно, что оно какое-то небольшое, иначе непонятно, как приводить пример для n-1, а также не совсем понятно как приходить к противоречию в n. Давайте начнём перебирать с маленьких. 1 точно не подходит, как и 2. Насчет тройки — наверное, вот так сразу же после двух очевидных случаев граница вряд ли будет идти, ведь как минимум, у нас выходит всего одно уравнение на члены (про то, что среднее равно полусумме крайних), а параметра два — a₁ и q. Но в смысле фиксации параметров кажется подходящим n = 4, ведь там два уравнения такого же вида и два параметра. Попробуйте расписать эти уравнения и решить их.
Подсказка 2
После сокращения уравнений на a₁ и (a₁*q)² соответственно мы получим два квадратных уравнения на a₁, а значит можно выписать корни явно (проверьте и то, почему мы вообще можем сокращать). При этом корни должны совпадать. Часто ли такое случается при нашей системе?
Подсказка 3
Нет, очевидными оценками можно получить, что корни никогда не могут совпадать (несколько случаев, которые сводятся либо к оценке, либо к единственному решению при q=1, или a₁=0). Ну тогда нам остается только привести пример при n=3. Как его найти? Можно составить ту систему, о которой говорится в первой подсказке и один из параметров выбрать самостоятельно, а для нахождения второго решить уравнение, но уже с одним параметром.
Обозначим знаменатель геометрической прогрессии через q. Предположим, что , тогда в исходной прогрессии точно присутствуют числа . Тогда по свойству арифметической прогрессии имеем
Поскольку все члены геометрической прогрессии различны, то и . Поделим первое уравнение системы на , а второе - на . Получим
Решая первое уравнение системы, как квадратное относительно , получаем
Решая второе уравнение системы, как квадратное относительно , получаем
Из этого следует, что . Если или , то . Полученное уравнение имеет решение только лишь при . Ранее было отмечено, что первые два варианта невозможны.
Если , то или . Но тогда прогрессия имеет либо вид , либо вид , что невозможно по условию.
Если или , то , откуда .
Поскольку и , то уравнение не имеет решений, а значит, .
Но , а , поэтому уравнение также не имеет решений, а значит, . При такая прогрессия существует, например, при .
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!