Тема . Изумруд

Комбинаторика на Изумруде: клетчатые задачи, игры, способы, процессы

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела изумруд
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71023

Петя и Вася играют в следующую игру. Петя в каждую клетку таблицы 8 × 8 записывает число от 1 до 64, используя каждое по одному разу. После этого Вася выбирает одну из клеток и ставит на эту клетку ладью. Затем он выбирает вторую клетку, на которую можно переместиться одним ходом ладьи из первой клетки, и перемещает ладью на эту клетку. Далее он выбирает третью клетку, на которую можно переместиться одним ходом ладьи из второй клетки, и перемещает ладью на эту клетку. Выбирать ранее посещённые клетки запрещено. После этого Вася складывает все три числа, записанных в клетках, на которых стояла ладья. Какую максимальную сумму гарантированно может получить Вася независимо от того, каким способом Петя заполнит таблицу? (Ладья может перемещаться на любое количество клеток по горизонтали или вертикали.)

Источники: Изумруд-2023, 11.5 (см. izumrud.urfu.ru)

Показать ответ и решение

Лемма. а) На доске 8× 8  выбраны 11 произвольных клеток. Тогда среди них можно найти три клетки такие, что от одной из них можно двумя ходами ладьи обойти вторую и третью клетки.

б) На доске, суммарное числом столбцов и строк в которой не более 11, выбраны 8 клеток. Тогда среди них можно найти три клетки такие, что от одной их них можно двумя ходами ладьи обойти вторую и третью клетки.

Доказательство леммы. Если в столбце/строке выбрана одна клетка, будем называть её одиночной, а если две — будем называть каждую из двух клеток парной. Будем говорить, что клетка занимает строку/столбец, если она стоит в этой строке/столбце. Заметим, что никакие другие клетки не могут быть выбраны в столбце/строке, где стоит одиночная или парная клетки. Тогда каждая пара клеток занимает суммарно 3 строки и столбца, а каждая одиночная — 1 строку и 1 столбец.

a) Обозначим число одиночных клеток за x,  а число парных клеток — за 2y.  Если лемма не выполняется, то нельзя 11 клетками занять более 8 строк и 8 столбцов, то есть 16 в сумме. Тогда имеем систему

{
   x+ 2y = 11
  2x +3y ≤ 16

Но 2x+ 3y = 1,5(x+ 2y)+ 0,5x= 16,5+0,5x> 16  — противоречие. Следовательно, предположение неверно и пункт а) леммы доказан.

б) Аналогично пункту а) леммы обозначим число одиночных клеток за x,  а число парных клеток за — 2y.  Если лемма не выполняется, то нельзя 8 клетками занять более 11 строк и столбцов в сумме. Тогда имеем систему

{
   x +2y = 8
  2x +3y ≤ 11

Но 2x+ 3y = 1,5(x+ 2y)+ 0,5x =12+ 0,5x >11  — противоречие. Следовательно, предположение неверно и пункт б) леммы доказан.

_________________________________________________________________________________________________________________________________________________________________________________

Рассмотрим 11 клеток с числами от 54 до 64. Из пункта а) леммы следует, что какие-то три из них второй игрок может обойти, придерживаясь условий задачи. Минимальная сумма трёх из этих чисел равна

54 +55+ 56= 165,  значит второй игрок всегда может получить сумму не менее 165 . Предположим, что сумму больше 165 не всегда удастся получить. Тогда никакие три из клеток с числами от 54 до 64 помимо 54, 55, 56 не должны оказаться в одной строке/столбце или образовывать "угол".

- - - - - - - -
- - a - - b - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - c  - -
- - - - - - - -
- - - - - - - -

При этом числа 54, 55, 56 обязаны оказаться в одной строке/столбце или образовывать "угол иначе найдётся другая тройка чисел с большей суммой. Если эти числа располагаются в одной строке/столбце, или образуют "угол то занимают суммарно 4 строки и столбца. Без ограничения общности, пусть эти числа стоят так, как показано ниже, ведь если поменять какие-то строки/столбцы местами, искомая сумма не изменится.

54 55 56 X X X X X
X X X - - - - -
X X X - - - - -
X X X - - - - -
X X X - - - - -
X X X - - - - -
X X X - - - - -
X X X - - - - -

И в том, и в другом случае оставшиеся 8 клеток с числами от 57 до 64 располагаются в выделенном прямоугольнике, количество строк и столбцов в которых суммарно равно 12. Если эти 8 клеток занимают не все строки или столбцы, то они занимают суммарно не более 11 строк и столбцов. Тогда из пункта б) леммы следует, что какие-то три числа стоят в одной строке/столбце или образуют “угол”, а значит, выбрав эти три клетки, мы увеличим искомую сумму. Если эти 8 клеток, среди которых x  одиночных и 2y  парных клеток, занимают все строки и столбцы, то имеем систему

{  x +2y = 8
  2x +3y = 12

откуда x =0,y = 4.  Следовательно, все клетки в выделенном прямоугольнике парные. Тогда найдётся число не менее 52 (на второй таблице число 53 может дополнять серые клетки до квадрата), которое стоит в одной строке или в одном столбце с какой-то парной клеткой из выделенного прямоугольника. Взяв это число и две парные клетки, получим сумму не менее 52+  57+58= 167.  Значит, примера, гарантирующего сумму 165, но не гарантирующего сумму 166, не существует.

Пример, гарантирующий сумму 166, но не гарантирующий сумму 167:

64 1 2 3 4 5 6 7
63 8 9 10 11 12 13 14
15 62 16 17 18 19 20 21
22 61 23 24 25 26 27 28
29 30 60 59 46 45 44 43
31 32 42 41 58 47 50 53
33 34 40 39 48 57 51 55
35 36 37 38 49 52 56 54

Здесь сумма 166 достигается, например, на числах 54, 55, 57. Все остальные суммы в пределах правого нижнего прямоугольника 3×4  не превосходят 166. Максимальная сумма в пределах правого нижнего прямоугольника 4 ×6  не будет превосходить 166, так как 60+ 59+46 =165.  Оставшиеся числа можно ставить в любые из оставшихся клеток, так как максимальная ещё не рассмотренная сумма будет равна 64 +63+ 36= 163.

Ответ:

 166

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!