Тема . ПЛАНИМЕТРИЯ

ГМТ, расположение объектов на плоскости

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71275

Докажите, что у любого треугольника есть три вневписанных окружности.

Показать доказательство

Во-первых, отметим, что точка I
 A  пересечения двух внешних биссектрис углов ∠ABC  и ∠ACB  подходит в качестве центра вневписанной окружности: эта точка, так как лежит на биссектрисе внешнего ∠ABC  , равноудалена от прямых AB  и BC  , по аналогичным соображениям она равноудалена от прямых AC  и BC  , значит, равноудалена от всех трех прямых, содержащих стороны треугольника ABC  . Поэтому окружность с центром в этой точке, касающейся одной из прямых, будет касаться и всех остальных. Итого три вневписанные окружности мы нашли.

PIC

Предположим, что существуют еще какие-то вневписанные окружности. Рассмотрим центр одной из них. Тогда он равноудален от всех трех прямых, содержащих стороны, а значит лежит либо на внутренних биссектрисах, либо на внешних. Но все точки их пересечения мы уже рассмотрели и соответствующие вневписанные окружности нашли, значит, другие вневписанных окружностей нет.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!