Тема . Счётная планиметрия

Двойные отношения и гармонические четвёрки

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#67678

В треугольнике ABC  высоты BE  и CF  пересекаются в точке H,  точка M  — середина стороны BC,  а X  — точка пересечения внутренних касательных к окружностям, вписанным в треугольники BMF  и CME.  Докажите, что точки X,M  и H  лежат на одной прямой.

Источники: ММО-2023, 11.3 (см. mmo.mccme.ru)

Подсказки к задаче

Подсказка 1

Пока не совсем понятно, как доказывать вопрос задачи. Углы тут совсем никак не помогут, потому что к ним не подобраться... Давайте попробуем пока в принципе отметить факты на картинке, может быть, что-нибудь в дальнейшем увидим. Например, поймём, где у нас лежат центры вписанных окружностей? Какое дополнительное построение хорошо бы сделать, когда отмечена середина стороны?

Подсказка 2

Верно, центры окружностей лежат на серединном перпендикуляре к сторонам BF и CE, так как треугольники у нас равнобедренные. К тому же если у нас уже есть по средней линии в треугольниках, то давайте проведём ещё по одной параллельно сторонам BF и CE. Значит, у нас уже есть биссектрисы углов B и C, соотношения для которых мы уже можем записать. И попробуем поделить одно соотношение на другое, хуже нам от этого не станет, к тому же у них есть одинаковый отрезок. Давайте немного подумаем. Мы работаем только с отрезками... А как с помощью них можно доказать принадлежность трёх точек одной прямой?

Подсказка 3

Точно, можно доказать, что точка X переводится гомотетией в точку H. Но... Доказывать это через треугольники точно не хочется. Это нужно продлевать серперы до пересечения с линией, параллельной отрезку, проходящего через центры окружностей... Так мы ничего добьёмся. Давайте попробуем доказать утверждение через равенство отношения расстояний от точек X и H до серперов. Одно большое соотношение мы уже получили. Тогда давайте и попробуем выйти через него на отношение расстояний. Давайте взглянем ещё раз внимательно на условие. Чем мы ещё не пользовались?

Подсказка 4

Верно, мы совсем забыли про точку X, а она является центром гомотетии двух окружностей! То есть можем ещё записать отношения с радиусами и двумя отрезками, нужными нам. Остаются только некоторые технические преобразования с отношениями, и победа!

Показать доказательство

PIC

Первое решение.

Пусть S,  T  - середины высот BE  и CF,  а L,  N  - середины отрезков BF  и CE.  Обозначим окружности, вписанные в треугольники BMF,  CME  через ω1,  ω2,  а их центры - через Ib  и Ic  соответственно. Треугольники BMF  и CME  - равнобедренные, поэтому точки Ib  и Ic  лежат на соответствующих высотах ML  и MN  этих треугольников. Отрезки BIb  и CIc  являются биссектрисами треугольников MLB  и MNC,  поэтому, записывая для них основное свойство биссектрисы, получаем соотношения MNIIcc = MNCC-,  MLIIbb = MBLB .  Разделив первое на второе и учитывая равенство MB  = MC,  получаем, что MMIIcb ⋅ LNIIbc = LNBC-.  Поскольку X  - центр гомотетии, переводящей ω1  в ω2,  то X  лежит на линии IbIc  и верно равенство: LNIIb= XXIIb.
  c    c  Но тогда

MIc-⋅ LIb= MIc-⋅ XIb = MIc⋅ SMXIb-= ρ(X,MIb),
MIb  NIc  MIb  XIc   MIb SMXIc   ρ(X,MIc)

где ρ(X,AB)  обозначает расстояние от точки X  до прямой AB.  С другой стороны, по свойству средней линии MS ||AC  и MT ||AB,  то есть MS ⊥ BE  и MT ⊥ CF.  Значит MLF T  и MNES  - прямоугольники, то есть MT  =LF  и MS = NE.  Тогда выполнены равенства

LB   LF   MT    ρ(H,ML )
NC-= NE-= MS- = ρ(H,MN-),

где последнее равенство выполнено, поскольку MS  и MT  есть в точности общие перпендикуляры к парам параллельных прямых BE ||MN  и CF||ML.  Собирая все доказанные равенства вместе, получаем, что

ρ(H,-ML)-= LB-= MIc-⋅ LIb= ρ(X,MIb),
ρ(H,MN  )  NC   MIb  NIc  ρ(X,MIc)

откуда следует, что точки M,  X  и H  лежат на одной прямой.

Второе решение.

Как и в первом решении обозначим окружности, вписанные в треугольники BMF  и CME,  через ω1,ω2,  их центры через Ib  и  Ic  соответственно, а середины отрезков BF  и CE  — через L  и N.  Пусть также Y  — точка пересечения внешних касательных к ω1,ω2.

Заметим, что четвёрка точек (Ib,Ic,X,Y)  — гармоническая, то есть двойное отношение (Ib,Ic;X, Y)  равно − 1.  Спроецируем эту четвёрку точек на прямую BE  с центром в точке M.  Точка Y  лежит на прямой BC,  поскольку эта прямая является одной из внешних касательных к ω1  и ω2,  поэтому Y  перейдёт в B.  Точка Ib  перейдёт в точку R  пересечения прямых ML  и BH,  которая является серединой BH,  поскольку в треугольнике BFC  отрезок ML  — средняя линия. Точка Ic  перейдёт в бесконечно удалённую точку прямой BH,  поскольку MIc||BH.

Но при центральной проекции сохраняется двойное отношение четвёрки точек, а четвёрка (R,∞; H,B)  — гармоническая. Значит, образом точки X  при данной проекции является точка H,  что и требовалось доказать.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!