Тема . Делимость и делители (множители)

Степени вхождения простых

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела делимость и делители (множители)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#35518

Существуют ли такие 16 натуральных чисел, что ни одно из них не делится на другое, а произведение любых двух из них делится на любое из оставшихся чисел?

Показать ответ и решение

Рассмотрим 16 различных простых чисел. Обозначим их через p,p ,...,p
1  2    16  . Через x  обозначим квадрат их произведения. Возьмем наши 16 чисел, равными x--x    -x-
p1,p2,...,p16  . Заметим, что в произведение двух любых наших чисел каждое из 16 простых чисел входит хотя бы во второй степени. Но в каждом из наших чисел каждое простое входит в 1 или во второй степени, поэтому произведение любых 2 чисел будет делиться на любое число. Сами числа друг на друга очевидно не делятся (у каждого свое уникальное простое входит в разложение в первой степени, остальные простые — во второй).

Ответ: Существуют

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!