Степени вхождения простых
Ошибка.
Попробуйте повторить позже
Известно, что делители всякого “неквадратного” (не является точным квадратом) числа можно разбить на пары (у “квадратного” числа нечётное количество делителей, в связи с чем разбить на пары невозможно) так, чтобы произведения делителей в каждой паре были равными. Например, А существуют ли “неквадратные” числа, все делители которых можно разбить на тройки так, чтобы произведения делителей в каждой тройке были равными?
Подсказка 1
Попробуем пойти от противного: предположим, что такое число есть! Вот пусть в каждой тройке делителей, на которые мы смогли его так разделить, произведение равно х. Тогда чему равняется произведение всех делителей этого числа?
Подсказка 2
Перемножаем все эти k троек делителей и получаем x в степени k. А теперь воспользуемся утверждением из условия о том, что любое "неквадратное" можно разбить на пары делителей с равными произведениями! Давайте посчитаем аналогично: чему равно произведение тех же самых всех 3k делителей, если в каждой паре произведение n?
Подсказка 3
Перемножаем и получаем n в степени 3k/2 (пополам 3k делителей разбиваются на пары). Осталось найти какое-то противоречие, что произведение всех делителей равно x^k и одновременно n^(3k/2). Попробуйте свести это к тому, что квадрат равен кубу "неквадратного" числа, и порассуждать в терминах разложения на простые множители :)
Предположим, что существует такое не являющееся точным квадратом натуральное число у которого делителей бьются на тройки с произведением в каждой тройке. Тогда произведение всех делителей равно
С другой стороны, если число не является точным квадратом, то его делители можно разбить на пары с произведением (если число делится нацело на то оно делится нацело и на ). Так что делители бьются на пары с произведением в каждой, откуда
В итоге
Так как число не является точным квадратом, то в его разложении на простые множители найдётся какой-то простой делитель в нечётной степени. При возведении в куб степень этого простого делителя останется нечётной. Получаем противоречие с равенством (в левой части равенства все простые делители должны быть в чётной степени, а справа есть делитель в нечётной степени).
нет
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!