Тема . Делимость и делители (множители)

Степени вхождения простых

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела делимость и делители (множители)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#89085

На доске написаны 2n  последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего числа меньшее, все замены происходят одновременно). Докажите, что на доске больше никогда не появятся 2n  последовательных целых чисел.

Подсказки к задаче

Подсказка 1

Каким способом можно доказать, что состояние фиксированного объекта в процессе его изменения не приведёт к тому, что он примет начально состояние?

Подсказка 2

Найти полуинвариант! Давайте найдем величину, которая будет меняться монотонно в ходе процесса, и, как следствие, не вернется к изначальному состоянию.

Подсказка 3

Как найти полуинвариант в данной задаче? В условии задачи сказано, что при замене двух чисел x и y на их сумму x+y, второе число равно x-y или y-x. Было бы хорошо, если бы наш полуинвариант вел себя одинаково вне зависимости от этого выбора. Ясно, что данные числа равны по модулю. Как это помогает найти полуинвариант?

Подсказка 4

Пусть S является искомым полуинвариантом. Ясно, что S - это функция от набора чисел, написанных на доске в данный момент. Если мы положим в качестве S функцию от их квадратов, то значение S будет совпадать при выборе любой из разности чисел (x-y или y-x), что является хорошим знаком. Осталось доопределить S.

Подсказка 5

Самые естественные функции от набора переменных - их сумма или произведение. С суммой в данном случае работать проще (итак, в качестве предполагаемого полуинварианта мы пока положим S - сумму квадратов чисел написанных на доске), поскольку мы можем легко получить значения данного полуинварианта на каждом ходу. Поймите, как это можно сделать.

Подсказка 6

Если на доске были написаны числа x² и y², то сумма их квадратов измениться на (x-y)²+(x+y)²=2(x²+y²). Таким образом, значение S после каждого шага увеличивается вдвое. Осталось показать, что не существует двух различных последовательностей из 2n идущих подряд чисел таких, что отношение сумм их квадратов равно степени двойки. Каким способом это возможно сделать?

Подсказка 7

Мы можем показать, что степень вхождения двойки в сумму квадратов 2n последовательных чисел является инвариантом для данного n. Для этого можно явно показать, как степень вхождения двойки в рассматриваемую сумму зависит от n.

Подсказка 8

Пусть 2n=l*2^k, где l - нечетное натуральное число, k - натуральное число, не меньшее 1. Докажите, что степень вхождения двойки в сумму квадратов 2n последовательных чисел равна k-1.

Подсказка 9

Искомую сумму можно представить как l сумм 2^k последовательных квадратов натуральных чисел. Если мы докажем, что каждая из них имеет вид 2^{k-1}t, для некоторого нечетного числа t, то явно получим, что и вся сумма делится на 2^{k-1}, но не делится на 2^k. Сделайте это!

Подсказка 10

Рассмотрим сумму последовательных 2^k квадратов по модулю 2^k. Квадраты этих чисел имеют тот же набор остатков при делении на 2k, что и набор чисел 1², 2², 3²,..., (2^k)², а значит сравнимо по этому модулю c суммой 1²+2²+...+(2^k)². Каким образом ее можно преобразовать?

Подсказка 11

По известной формуле суммы квадратов первых n чисел, 1²+2²+...+(2^k)²=2^{k-1}(2^k+1)(2^{k+1}+1)/3 - кратно 2^{k-1}, но не кратно 2^k. Это как раз то, что мы хотели показать!

Показать доказательство

Рассмотрим набор из 2k  подряд идущих чисел, квадраты этих чисел имеют тот же набор остатков при делении на 2k,  что и набор чисел  2 2  2   ( k)2
1 ,2,3,..., 2  .  Поскольку

 2  2   2     ( k)2
1 +2 + 3 + ...+ 2  (=    )(      )      (    )(      )
               = 2k-2k+-1-2-⋅2k+-1-= 2k−12k+-1-2⋅2k-+1--
                        6                    3

сумма квадратов  k
2  подряд идущих чисел делится на  k−1
2   ,  но не делится на  k
2 .

Представим число 2n  в виде  k
2 ⋅l,  где l  нечётно. Тогда сумма 2n  последовательных квадратов разбивается на l  сумм вида  k−1
2   ti,  где все ti  нечётны, поэтому вся сумма также делится на  k−1
2   ,  но не делится на  k
2.  Следовательно, наибольшая степень двойки, на которую делится сумма квадратов 2n  последовательных чисел, зависит только от n,  но не от самих чисел.

В то же время сумма квадратов имеющихся чисел после замены удваивается. Действительно, заменив числа a  и b  на a− b  и a+ b,  получим:

                         (     )
(a− b)2+ (a+ b)2 = 2a2+2b2 = 2 a2 +b2

Таким образом, снова получить набор из 2n  подряд идущих чисел нельзя.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!