Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела теория чисел
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#83387

Цель этого сюжета — доказательство следующего утверждения:

Пусть p  — нечётное простое чисто. Докажите, что существует ровно (p− 3)∕2  упорядоченных четвёрок (a,b,c,d)  натуральных чисел, для которых ab+ cd =p  и max(c,d)<min(a,b)  .

Если r  — остаток по модулю p  , то назовём четвёрку (a,b,c,d  ), удовлетворяющую условиям выше, r  -четверкой, если c ≡ra  (mod p  ).

1. Докажите, что если r  -четвёрка существует, то r∈{2,3,...,p− 2} .

2. Докажите, что для данного r  существует не более одной r  -четвёрки.

3. Докажите, что если r  -четверка существует, то (p − r)  -четвёрки не существует.

4. Докажите, что для всякого r∈{2,3,...,p− 2} существует либо r  -четвёрка, либо (p − r)  -четвёрка.

Источники: ЮМШ - 2024, сюжет 1 (см. yumsh.ru)

Показать доказательство

1. Пусть существует r  -четверка (a,b,c,d)  при r= 1  . Тогда p=ab+ cd≡ ≡ ab+ rad= a(b+d)  (mod p  ). Получаем, что       .
a(b+ d)..p  . Тогда либо a  , либо b+ d  делится на p  . Тогда либо a ≥p  , b+ d≥ p  . В первом случаем получаем, что ab+ cd≥ p+cd> 1  . Во втором же ab+cd≥ 2b+d ≥p +1  . Получаем, что 1  -четверки не существует.

Пусть существует r  -четверка (a,b,c,d)  при r= p− 1  . Тогда p= ab+cd≡ ≡ab+ rad =a(b− d)  (mod p  ). Получаем, что       .
a(b− d)..p  . Тогда либо a  , либо b− d  делится на p  . Тогда либо a≥ p  , b+ d≥ p  (b− d ⁄=0  , поскольку b> d  ). В первом случаем получаем, что ab+ cd≥p +cd> 1  . Во втором же ab+cd≥ b+ d> b− d ≥p  . Получаем, что (p− 1)  -четверки тоже не существует.

2. Пусть (a,b,c,d)  , (a′,b′,c′,d′)  — две четверки, удовлетворяющие условиям с одним и тем же r  . Тогда ac′ ≡ara′ ≡ ca′ (mod p  ), аналогично bd′ ≡− rdd′ ≡ b′d  (mod p  ). Т.е. ac′− a′c  , bd′− b′d  кратны p  .

Предположим, что эти разности одновременно не равны нулю. Пусть не умаляя общности ac′− a′c> 0  , тогда ac′ >p >ab  , т.е. c′ > b  и тем более c′ > d  . Отсюда получаем, что |bd′− b′d|< max(bd′,b′d) <max(c′d′,b′c′)= b′c′ < a′b′ < p  откуда (т.к. |b′d− b′d| кратно  p  ) получаем bd′− b′d= 0  — противоречие.

Пусть теперь одна из исходных разностей равна нулю (не умаляя общности bd′− b′d  ). Отметим, что из равенств ab+ cd =p =a′b′+ c′d′ следует взаимная простота b  и d  , b′ и d′ . Поэтому из равенства bd′ = b′d  следует, что b= b′ и d =d′ , а из него — (a− a′)b= (c′− c)d  . В силу взаимной простоты b  и d  имеем a− a′ =dx  , c′− c =bx  . При x> 0  это противоречит условию c′ < b′ = b  , при x< 0  — условию c< b  . Значит x =0  , a =a′ , c= c′ — четверки полностью совпадают.

3. Пусть (a,b,c,d)  , (a′,b′,c′,d′)  — две четверки, удовлетворяющие условиям с r  и c r′ = p− r  соответственно. Тогда ac′ ≡− ara′ ≡ −ca′ (mod p  ), аналогично bd′ ≡ −rdd′ ≡−b′d  (mod p  ). Т.е. ac′+a′c  , bd′+b′d  кратны p  .

Пусть c′ ≥ b  , а значит c′ > c,d  , тогда, аналогично прошлому пункту, bd′+b′d< c′d′+b′c′ < c′d′+b′a′ = p  — противоречие с делимостью на p  . Значит c′ < b  и, аналогично c< b′ , d′ < a  , d< a′ . Тогда a′c+ac′ <ab+ a′b′ < 2p  , поэтому из делимости ac′+a′c= p  и аналогично b′d+bd′ = p  .

Предположим теперь, не умаляя общности, что a  — наибольшее из чисел. Вычитая из ab+cd  равное ему ac′+ ca′ , получаем a(b− c′)=c(a′− d)  , откуда из взаимной простоты a  и c  получаем, что a′− d  делится на a  — противоречие с тем, что a< a′ , a′− d> 0  .

4. Рассмотрим на плоскости множество всех векторов (x,y)  с целыми координатами x,y  такими, что y ≡ rx  (mod p  ) или y ≡(p− r)x  . Отметим, что это множество вместе с каждым вектором (x,y)  содержит также и (±x,±y)  . Рассмотрим в нашем множестве вектор с минимальной суммой координат. В силу замечания выше можно считать, что вектор u:= (a,c)  , где a,c>0  , a ⁄=c  (на осях координат и на биссектрисах углов между ними такой вектор лежать не может, поскольку 2≤ r≤p − 1  ), если c ≡(p− r)a  (mod p  ), то переобозначим r  и p− r  . Предположим пока, что a> c  . Рассмотрим прямую ℓ  с уравнением xc− ya= p  . Будем искать точку (d,−b)  на этой прямой такую, что d> 0,d <a,d< b,c <b  — тогда четверка (a,b,c,d)  и будет искомой. Заметим, что если (x,y)∈ℓ  , то (x− a,y − c)∈ℓ  .

Прямая ℓ  где-то пересекает прямую y+ x= 0  . Пусть точка (x0,y0)∈ ℓ  с целыми x0,y0  лежит выше прямой y+ x= 0  , а точка v0 :=(x0− a,y0− c)  — (нестрого) ниже.

Во-первых, проверим, что x0− a >0  . В самом деле, в противном случае x0 ≤ a  . Из выбора вектора u  имеем a+ c≤ |x0− a|+|y0− c|= a− x0 +|y0 +c| . Если c≥y0  , то a− x0+ |y0− c|= a+ c− x0− y0 < a+ c  — противоречие. Если же y0 >c  , то p =x0c− y0a <ac− ac= 0  — снова противоречие.

Итак, x0− a> 0  . Поскольку (x0− a)+ (y0− c)≤ 0  , имеем y0 − c< 0  . Если y0 ≥ 0  , то 0< x0− a ≤c− y0 ≤ c  и обе координаты вектора v0  по модулю не больше, чем c  — это опять противоречит выбору u  . Значит, y0 < 0  и c− y0 > c  . Теперь выберем наибольшее целое неотрицательное m  , при котором x0− a− ma≥ 0  . Ясно, что это неотрицательное значение строго меньше, чем a  . Тогда вектор v0− mu =(x0− a− ma, y0− c− mc)  и есть искомый вектор. Действительно, все нужные неравенства уже установлены, осталось только исключить случай x0 − a− ma =0  , но в таком случае из уравнения прямой ℓ  получаем xc− ya= p  , − (y0− c− mc)a =p  , что невозможно в силу того, что a> c> 0  , − y0+c +mc ≥1 +c+ mc≥ 2  .

Наконец обратимся к случаю c> a  . В этом случае обозначим a′ =c  , c′ = a  и построим точно так же четверку (a′,b′,c′,d′)  со всеми нужными свойствами, но такую, что, наоборот a′ ≡rc′ (mod p  ). В этом случае, очевидно, (b′,a′,d′,c′)  будет p − r  -четверкой, что нам подходит.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!