Тема . Квадратные трёхчлены

Квадратные трёхчлены с целыми коэффициентами

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела квадратные трёхчлены
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#75446

Существуют ли квадратные трёхчлены ax2+bx+ c  и (a +1)x2+(b+ 1)x+ (c+1)  с целыми коэффициентами, каждый из которых имеет по два целых корня?

Источники: Всеросс., 1997, ЗЭ, 10.5(см. math.ru)

Подсказки к задаче

Подсказка 1

Для начала давайте подумаем, что у нас есть в наличии. Во-первых, у нас есть факт, что все корни целые, во вторых, что все переменные a, b, c - целые. На какую тогда теорему нас могут натолкнуть эти два факта?

Подсказка 2

Верно, на теорему Виета! Ведь, так как корни целые, то и все коэффициенты приведенных квадратных трехчленов(то есть, когда мы поделим на главный коэффициент) должны быть целыми. А что это нам может дать?

Подсказка 3

А это дает, что числитель делится на знаменатель. Однако в этот момент надо остановиться и не выписывать все делимости, а подумать, можем ли мы обойтись каким-то более маленьким фактом, который следует из делимости? А если рассмотреть несколько случаев вида а - четный/нечетный? Как от четности а зависят четности других переменных? Подумайте над этим, и задача решится сама!

Показать ответ и решение

Если каждый трёхчлен имеет целые корни, то каждое из выражений c
a  , b
a  , c+1
a+1  и b+1
a+1  должно быть целым, так как каждое из них выражается через соответствующие целые корни по теореме Виета.

Пусть a  — нечётное, тогда a+ 1  чётно, равно как и b+ 1  и c+1  . Следовательно, b  и c  нечётные. В этом случае видно, что если     x  чётный, то   2
ax +bx+ c  нечётно, а значит, не может равняться 0  . Если же x  нечётный, то   2
ax +bx+ c  также нечётно, пришли к противоречию.

Если a  — чётное, то мы придём к такому же противоречию, только со вторым трёхчленом.

Ответ: нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!