Тема . Квадратные трёхчлены

Квадратные трёхчлены с целыми коэффициентами

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела квадратные трёхчлены
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#75449

Коэффициенты a,b,c  квадратного трёхчлена f(x)= ax2 +bx+ c  — натуральные числа, сумма которых равна 2000.  Паша может изменить любой коэффициент на 1,  заплатив 1  рубль. Докажите, что он может получить квадратный трёхчлен, имеющий хотя бы один целый корень, заплатив не более 1050  рублей.

Источники: Всеросс., 2015, РЭ, 10.7(см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Во-первых, что мы можем делать, чтобы при каком-то условии точно был корень? Мы можем уменьшать c до 0, ведь тогда у нас будет корень 0. Но что, если c > 1050?

Подсказка 2

Тогда a + b <= 949. Что еще нам выгодно сделать? Коль скоро мы уже зануляли последний коэффициент, то надо пробовать занулить средний (ведь в дискриминанте первый и последний почти никак не отличаются, так как они равноправны). Что мы вообще хотим, если предполагаем занулять средний? Мы хотим, чтобы -4ac было квадратом, значит, a < 0. Ну и поскольку а никак не зависит от с, не считая суммы, то стоит попробовать взять а = -1, и тогда останется только сделать c - точным квадратом. Почему все это можно реализовать за 1050 действий?

Подсказка 3

Верно, чтобы сделать a = -1, b = 0 надо не более 950 действий. У нас остается 100 действий, но при этом, понятно, что в силу того, что с < 2000, так как изначально числа натуральные, то расстояние до ближайшего квадрата точно не больше чем 45^2 - 44^2(чем больше квадрат, тем больше расстояние от него до следующего) = 89 < 100. Значит, 100 действий, чтобы довести до квадрата, хватит!!

Показать доказательство

Если c ≤1050,  то просто сделаем c =0  и получим корень x = 0.  Пусть теперь c≥ 1051,  тогда a +b≤ 949.  Сделаем a =− 1  и b =0,  на это уйдёт не более 950  рублей. В нашем распоряжении осталось хотя бы 100  рублей, покажем, что их достаточно, чтобы увеличить или уменьшить c  до ближайшего квадрата. c< 2000,  а значит оно располагается между квадратами, расстояние между которыми не превосходит   2   2
45 − 44 = 89< 100.  Таким образом, нам хватит 100  рублей, чтобы сделать c  квадратом и получить трёхчлен    2   2
− x + n ,  который имеет целые корни, что и требовалось.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!