Тема . Квадратные трёхчлены

Квадратные трёхчлены с целыми коэффициентами

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела квадратные трёхчлены
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#79750

На доске пишут n  квадратных трёхчленов вида ⋆x2+ ⋆x +⋆  (вместо коэффициентов написаны звёздочки). Можно ли при каком-либо n >100  поставить вместо 3n  звёздочек некоторые 3n  последовательных натуральных чисел (в каком-то порядке) так, чтобы каждый из n  данных трёхчленов имел два различных целых корня?

Источники: Всеросс., 2020, РЭ, 10.8(см. olympiads.mccme.ru)

Показать ответ и решение

Решение будет состоять из трёх шагов (A,B,C).

A)  Докажем следующую лемму. Лемма. Пусть при некоторых натуральных a,b,c  квадратный трёхчлен   2
ax +bx+ c  имеет целые корни. Тогда b  и c  делятся на a.

Доказательство. По теореме Виета b
a =− (x1+ x2)  и c
a = x1x2  являются целыми числами. Лемма доказана.

B)  Предположим, что натуральные числа k+1,k+ 2,...,k+ 3n  (при некотором целом неотрицательном k) нужным образом расставлены в качестве коэффициентов данных квадратных трёхчленов   2
aix + bix +ci(i= 1,2,...,n).  Для определённости пусть a1 < a2 < ...< an.  Тогда a1 ≥k +1,  откуда a2 ≥k +2,  и т.д., an ≥ k+ n.  Тогда из леммы следует, что минимальное из чисел bn,cn  не меньше, чем 2an,  а максимальное (назовём его M  ) — не меньше, чем 3an.  Но M  должно быть среди чисел k+1,k+ 2,...,k+ 3n.  Получаем 3(k+n)≤ 3an ≤ M ≤ k+3n.  Отсюда k≤ 0,  и, значит, k= 0.  Кроме того, an =n,  откуда сразу следует, что ai = i  при i= 1,2,...,n.

C)  Среди 3n  подряд идущих чисел менее 3n2 + 1  чётных. С другой стороны, зная, что ai  пробегают числа {1,2,...,n},  получим оценку снизу на количество C  чётных чисел среди всех коэффициентов. Заметим, что в каждой из n  троек (ai,bi,ci)  хотя бы одно чётное число, иначе значение трёхчлена aix2+ bix+ ci  в любой целой точке будет нечётно, в частности, такой трёхчлен не может иметь целых корней. Если же ai  чётно (количество соответствующих троек (ai,bi,ci)  равно [n2]  ), то bi  и ci,  в силу леммы, тоже чётные, значит, в такой тройке (ai,bi,ci)  все три коэффициента чётные. Итого C ≥ n+ 2[n2]≥ 2n− 1.  Сравнивая верхнюю и нижнюю оценки, имеем 3n2-+1 >C ≥ 2n − 1,  откуда n< 4.  Противоречие.

Ответ:

Нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!