Квадратные трёхчлены с целыми коэффициентами
Ошибка.
Попробуйте повторить позже
Рассматриваются всевозможные квадратные трехчлены вида где — целые, Каких трехчленов среди них больше: имеющих целые корни или не имеющих действительных корней?
Подсказка 1
Попробуем составить соответствие между многочленами двух видов. Если для каждого многочлена первого вида мы сможем найти свой многочлен второго вида, значит, многочленов второго вида будет не меньше.
Подсказка 2
Пусть у нас есть многочлен с корнями -m и -n, соответствующий условиям. Что тогда можно сказать про многочлен x^2 + nx+mn?
Подсказка 3
Дискриминант этого многочлена равен n(n-4m). Если вдруг m >= n, то такой многочлен не будет иметь корней. Осталось показать, что каждому многочлену с корнями сопоставлен свой многочлен без корней. Остается только найти многочлен без корней, который не представляется как x^2+nx+mn.
Пусть - — целые корни трёхчлена Тогда следовательно,
Рассмотрим трёхчлен Его коэффициенты — целые числа от до и оно не имеет корней, так как
Итак, каждому трёхчлену с целыми корнями мы поставили в соответствие трёхчлен, не имеющий корней; при этом разным трёхчленам сопоставлены разные. Кроме того, трёхчлены вида где чётно, нечётно и не представимы в виде Значит, трёхчленов, не имеющих корней, больше.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!