Планиметрия на КФУ
Ошибка.
Попробуйте повторить позже
В неравнобедренном треугольнике провели высоту
медиану
и биссектрису
Точки
и
— ортогональные
проекции вершин
и
на прямую
Докажите, что точки
и
лежат на одной окружности.
Источники:
Рассмотрим без ограничения общности Тогда точка
лежит внутри треугольника
, а точка
вне
его.
Первое решение.
Построим описанную окружность треугольника , тогда продолжение биссектрисы
пересечет ее в точке
,
являющейся серединой дуги
. Тогда
, то есть медиана
равнобедренного треугольника
будет также и
высотой.
Так как , то получим, что
. Так как
аналогично получаем, что
.
Но углы равны, как вписанные углы, опирающиеся на одну дугу.
В итоге . Но из равенства углов
следует, что точки
лежат на одной
окружности.
Второе решение.
Обозначим через и
точки пересечения прямых
и
и
соответственно.
Поскольку — биссектриса и
треугольники
и
— равнобедренные, и значит,
и
В треугольнике точки
и
— середины сторон
и
поэтому
— средняя линия, и значит,
Аналогично,
Следовательно,
Возможны два случая:
a) Точки
и
лежат на одной окружности с диаметром
поэтому четырёхугольник
— вписанный.
Значит,
Следовательно, точки и
лежат на одной окружности.
б) тогда точки
и
лежат на одной окружности с диаметром
поэтому четырёхугольник
—
вписанный. Значит,
Следовательно, точки и
лежат на одной окружности.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!