Теория чисел на КФУ
Ошибка.
Попробуйте повторить позже
Пусть (2024 девятки). Какова в этом числе:
а) 2024-ая;
б) 2025-ая
цифра после запятой?
Источники:
Подсказка 1
Мы знаем, что 0,9 = 1 - 10⁻¹, тогда наше подкоренное выражение можем записать как 1 - 10⁻²⁰²⁴. Хочется как-то ограничить a, попробуем ограничить через связь с (- 10⁻²⁰²⁴) = x, то есть, хотим получить f(x) < √(1+x) < g(x). Ведь в таком случае мы сможем что-то сказать о 2024-й и 2025-й цифре после запятой!
Подсказка 2
Так как значение под корнем меньше 1, то 1 + x < √(1+x) < 1, но нужна более точная оценка. Поможет, например, возведение в квадрат или деление.
Подсказка 3
Попробуем ограничить снизу 1+x/2 -x²/8, а сверху 1+ x/2, после доказательства сможем получить сразу и 2024-ую цифру, и 2025-ую!
Обозначим
Докажем, что
Это неравенство из-за области значений эквивалентно возведённому в квадрат:
Теперь правое неравенство очевидно в силу , а левое тоже в силу
Тогда получаем, что
где
а) 9;
б) 4
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!