Тема . КФУ (олимпиада Казанского Федерального Университета)

Теория чисел на КФУ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела кфу (олимпиада казанского федерального университета)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#103995

Пусть a =√0,99...99  (2024 девятки). Какова в этом числе:

а) 2024-ая;

б) 2025-ая

цифра после запятой?

Источники: КФУ - 2025, 11.2 (см. malun.kpfu.ru)

Подсказки к задаче

Подсказка 1

Мы знаем, что 0,9 = 1 - 10⁻¹, тогда наше подкоренное выражение можем записать как 1 - 10⁻²⁰²⁴. Хочется как-то ограничить a, попробуем ограничить через связь с (- 10⁻²⁰²⁴) = x, то есть, хотим получить f(x) < √(1+x) < g(x). Ведь в таком случае мы сможем что-то сказать о 2024-й и 2025-й цифре после запятой!

Подсказка 2

Так как значение под корнем меньше 1, то 1 + x < √(1+x) < 1, но нужна более точная оценка. Поможет, например, возведение в квадрат или деление.

Подсказка 3

Попробуем ограничить снизу 1+x/2 -x²/8, а сверху 1+ x/2, после доказательства сможем получить сразу и 2024-ую цифру, и 2025-ую!

Показать ответ и решение

 a =√1-− 10−2024.  Обозначим x= −10−2024.  Докажем, что

   x  x2  √----     x
1+ 2 − 8 < 1 +x <1+ 2

Это неравенство из-за области значений x  эквивалентно возведённому в квадрат:

   x2   x4      x2  x3              x2
1 +-4 + 64-+x − 4-− 8-< 1+ x< 1+x + 4-

Теперь правое неравенство очевидно в силу     2
0< x4-  , а левое тоже в силу  4   3
x64 < x8 .

Тогда получаем, что

               −4048
1 − 5⋅10−2025− 10---< a< 1− 5⋅10− 2025
               8

1− 6⋅10−2025 < a< 1− 5⋅10− 2025

a =0,9◟9..◝.◜99◞+4⋅10−2025+ 𝜀,
      2024

где      −2025
𝜀 <10    .

Ответ:

а) 9;

б) 4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!