Теория чисел на КФУ
Ошибка.
Попробуйте повторить позже
Пусть — нечётное простое число. Найдите все целые
и
такие, что
Источники:
Подсказка 1
Такс, нам говорят, что p простое. Это очень сильное условие, поэтому давайте попробуем перенести p в правую часть, а всё остальное в левую! И после этого попробуем левую часть разложить на множители.
Подсказка 2
Да, она раскладывается не так уж и легко. Так что, попробуйте вынести (x+y), а дальше подобрать не так сложно)
Подсказка 3
В итоге, должно получиться равенство (x+y)(x-y) ² = -p³. А теперь нам сильно помогает условие на простоту p, ведь мы теперь точно понимаем, чему может равняться каждая из скобок! Всего два случая, в первом квадрат это ±p, а во втором ±1. Осталось решить каждый из случаев
Подсказка 4
Верно, для того, чтобы решить каждую систему, достаточно просто сложить или вычесть её уравнения!
Перепишем уравнение в виде и разложим левую часть на множители:
Таким образом, числа и
являются степенями простого числа
. Но
— чётная степень
значит, множитель
— это нечётная степень
и так как
то
В первом случае имеем
Во втором
Так как — нечётное, то числа
и
в этих наборах — целые.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!